Obai33's picture
Update app.py
9b2a786 verified
raw
history blame
4.12 kB
# -*- coding: utf-8 -*-
"""ArabicPoetryGeneration.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1HDyT5F8qnrbR_PW_HYpiM3O-7i6htGG2
"""
'''
pip install transformers
pip install tashaphyne
pip install gradio
pip install translate
'''
import pandas as pd
import nltk
from nltk.tokenize import word_tokenize
from transformers import BertTokenizer
from transformers import AutoTokenizer
import random
from tashaphyne import normalize
import re
import numpy as np
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Dense, Bidirectional, GRU
import tensorflow as tf
from transformers import AutoTokenizer
nltk.download('punkt')
nltk.download('wordnet')
aurl = 'https://raw.githubusercontent.com/Obai33/NLP_PoemGenerationDatasets/main/arabicpoems.csv'
adf = pd.read_csv(aurl)
# Function to normalize text
def normalize_text(text):
normalize.strip_tashkeel(text)
normalize.strip_tatweel(text)
normalize.normalize_hamza(text)
normalize.normalize_lamalef(text)
return text
# Normalize the text
allah = normalize_text('ุงู„ู„ู‡')
adf = adf['poem_text']
i = random.randint(0, len(adf))
adf = adf.sample(n=100, random_state=i)
adf = adf.apply(lambda x: normalize_text(x))
adf = adf[~adf.str.contains(allah)]
# Function to clean text
def remove_non_arabic_symbols(text):
arabic_pattern = r'[\u0600-\u06FF\s]+'
arabic_text = re.findall(arabic_pattern, text)
cleaned_text = ''.join(arabic_text)
return cleaned_text
# Clean the text
adf = adf.apply(lambda x: remove_non_arabic_symbols(x))
# Tokenize the text
tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv2")
tokens = tokenizer.tokenize(adf.tolist(), is_split_into_words=True)
input_sequences = []
for line in adf:
token_list = tokenizer.encode(line, add_special_tokens=True)
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i+1]
input_sequences.append(n_gram_sequence)
max_sequence_len = 100
input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre'))
total_words = tokenizer.vocab_size
xs, labels = input_sequences[:, :-1], input_sequences[:, -1]
ys = tf.keras.utils.to_categorical(labels, num_classes=total_words)
print('error not here')
##############
import requests
'''
# URL of the model
url = 'https://github.com/Obai33/NLP_PoemGenerationDatasets/raw/main/modelarab1.h5'
# Local file path to save the model
local_filename = 'modelarab1.h5'
# Download the model file
response = requests.get(url)
with open(local_filename, 'wb') as f:
f.write(response.content)
'''
model = tf.keras.layers.TFSMLayer('/my_model', call_endpoint='serving_default')
print('ok model loaded')
##############
# Import the necessary library for translation
import translate
# Function to translate text to English
def translate_to_english(text):
translator = translate.Translator(from_lang="ar", to_lang="en")
translated_text = translator.translate(text)
return translated_text
def generate_arabic_text(seed_text, next_words=50):
generated_text = seed_text
for _ in range(next_words):
token_list = tokenizer.encode(generated_text, add_special_tokens=False)
token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre')
predicted = np.argmax(model.predict(token_list), axis=-1)
output_word = tokenizer.decode(predicted[0])
generated_text += " " + output_word
reconnected_text = generated_text.replace(" ##", "")
t_text = translate_to_english(reconnected_text)
return reconnected_text, t_text
import gradio as gr
print('error not here')
# Update Gradio interface to include both Arabic and English outputs
iface = gr.Interface(
fn=generate_arabic_text,
inputs="text",
outputs=["text", "text"],
title="Arabic Poetry Generation",
description="Enter Arabic text to generate a small poem.",
theme="compact"
)
# Run the interface
iface.launch()