import streamlit as st # import fitz # PyMuPDF for extracting text from PDFs from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.docstore.document import Document from langchain.llms import HuggingFacePipeline from langchain.chains import RetrievalQA from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM import torch import re import transformers from torch import bfloat16 from langchain_community.document_loaders import DirectoryLoader # Initialize embeddings and ChromaDB model_name = "sentence-transformers/all-mpnet-base-v2" device = "cpu" model_kwargs = {"device": device} embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) loader = DirectoryLoader('./pdf', glob="**/*.pdf", use_multithreading=True) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) all_splits = text_splitter.split_documents(docs) vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory="pdf_db") books_db = Chroma(persist_directory="./pdf_db", embedding_function=embeddings) books_db_client = books_db.as_retriever() # Initialize the model and tokenizer model_name = "stabilityai/stablelm-zephyr-3b" bnb_config = transformers.BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type='nf4', bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16 ) model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024) model = transformers.AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, config=model_config, quantization_config=bnb_config, device_map=device, ) tokenizer = AutoTokenizer.from_pretrained(model_name) query_pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, return_full_text=True, torch_dtype=torch.float16, device_map=device, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=256 ) llm = HuggingFacePipeline(pipeline=query_pipeline) books_db_client_retriever = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=books_db_client, verbose=True ) st.title("RAG System with ChromaDB") # Initialize session state for tracking previous questions and answers if "history" not in st.session_state: st.session_state.history = [] # Function to retrieve answer using the RAG system def test_rag(qa, query): return qa.run(query) query = st.text_input("Enter your question:") if st.button("Submit"): if query: # Get the answer from RAG books_retriever = test_rag(books_db_client_retriever, query) # Extracting the relevant answer using regex corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL) if corrected_text_match: corrected_text_books = corrected_text_match.group(1).strip() else: corrected_text_books = "No helpful answer found." # Store the query and answer in session state st.session_state.history.append({"question": query, "answer": corrected_text_books}) # Display previous questions and answers if st.session_state.history: # st.write("### Previous Questions and Answers") for idx, item in enumerate(st.session_state.history): st.write(f"**Question:** {item['question']}") st.write(f"**Answer:** {item['answer']}") st.write("---")