vocos-bark / app.py
reach-vb's picture
reach-vb HF staff
Update app.py (#1)
b52d0fa
import torch
from threading import Thread
from transformers import AutoProcessor
from transformers import set_seed
from vocos_bark import BarkModel
import numpy as np
import gradio as gr
from vocos import Vocos
set_seed(0)
def _grab_best_device(use_gpu=True):
if torch.cuda.device_count() > 0 and use_gpu:
device = "cuda"
else:
device = "cpu"
return device
device = _grab_best_device()
HUB_PATH = "suno/bark"
processor = AutoProcessor.from_pretrained(HUB_PATH)
speaker_embeddings = sorted([key for key in processor.speaker_embeddings.keys() if "speaker" in key])
SAMPLE_RATE = 24_000
vocos = Vocos.from_pretrained("charactr/vocos-encodec-24khz").to(device)
title = "# 🐶 Bark with <a href='https://github.com/charactr-platform/vocos'>Vocos</a></div>"
description = """
<div>
<a style="display:inline-block" href='https://github.com/charactr-platform/vocos'><img src='https://img.shields.io/github/stars/charactr-platform/vocos?style=social' /></a>
<a style="display:inline-block; margin-left: 1em" href="https://huggingface.co/spaces/hf-audio/vocos-bark?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space%20to%20skip%20the%20queue-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
Bark is a universal text-to-audio model created by Suno. \
Bark can generate highly realistic, multilingual speech as well as other audio - including music, background noise and simple sound effects. \
In this demo, we leverage charactr's Vocos model to create high quality audio from Bark. \
"""
# import model
if device == "cpu":
bark = BarkModel.from_pretrained(HUB_PATH)
else:
bark = BarkModel.from_pretrained(HUB_PATH).to(device)
bark = bark.to_bettertransformer()
# Inference
def generate_audio(text, voice_preset = None, lag = 0):
if voice_preset not in speaker_embeddings:
voice_preset = None
sentences = [
text,
]
inputs = processor(sentences, voice_preset=voice_preset).to(device)
# Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way.
fine_output = bark.generate(
**inputs, coarse_temperature = 0.8, temperature = 0.5, do_sample=True
)
print("Fine tokens generated")
with torch.no_grad():
features = vocos.codes_to_features(fine_output.transpose(0,1))
vocos_waveform = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device))
return (SAMPLE_RATE, vocos_waveform.cpu().squeeze().numpy())
# Gradio blocks demo
with gr.Blocks() as demo_blocks:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
inp_text = gr.Textbox(label="Input Text", info="What would you like bark to synthesise?")
spk = gr.Dropdown(
speaker_embeddings,
value=None,
label="Acoustic Prompt",
info="Default: Unconditional Generation"
)
btn = gr.Button("Generate Audio!")
with gr.Column():
out_audio_vocos = gr.Audio(type="numpy", autoplay=False, label="Generated Audio", show_label=True)
btn.click(generate_audio, [inp_text, spk], [out_audio_vocos])
demo_blocks.queue().launch(debug=True)