Spaces:
Running
Running
import torch | |
from threading import Thread | |
from transformers import AutoProcessor | |
from transformers import set_seed | |
from vocos_bark import BarkModel | |
import numpy as np | |
import gradio as gr | |
from vocos import Vocos | |
set_seed(0) | |
def _grab_best_device(use_gpu=True): | |
if torch.cuda.device_count() > 0 and use_gpu: | |
device = "cuda" | |
else: | |
device = "cpu" | |
return device | |
device = _grab_best_device() | |
HUB_PATH = "suno/bark" | |
processor = AutoProcessor.from_pretrained(HUB_PATH) | |
speaker_embeddings = sorted([key for key in processor.speaker_embeddings.keys() if "speaker" in key]) | |
SAMPLE_RATE = 24_000 | |
vocos = Vocos.from_pretrained("charactr/vocos-encodec-24khz").to(device) | |
title = "# 🐶 Bark with <a href='https://github.com/charactr-platform/vocos'>Vocos</a></div>" | |
description = """ | |
<div> | |
<a style="display:inline-block" href='https://github.com/charactr-platform/vocos'><img src='https://img.shields.io/github/stars/charactr-platform/vocos?style=social' /></a> | |
<a style="display:inline-block; margin-left: 1em" href="https://huggingface.co/spaces/hf-audio/vocos-bark?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space%20to%20skip%20the%20queue-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> | |
</div> | |
Bark is a universal text-to-audio model created by Suno. \ | |
Bark can generate highly realistic, multilingual speech as well as other audio - including music, background noise and simple sound effects. \ | |
In this demo, we leverage charactr's Vocos model to create high quality audio from Bark. \ | |
""" | |
# import model | |
if device == "cpu": | |
bark = BarkModel.from_pretrained(HUB_PATH) | |
else: | |
bark = BarkModel.from_pretrained(HUB_PATH).to(device) | |
bark = bark.to_bettertransformer() | |
# Inference | |
def generate_audio(text, voice_preset = None, lag = 0): | |
if voice_preset not in speaker_embeddings: | |
voice_preset = None | |
sentences = [ | |
text, | |
] | |
inputs = processor(sentences, voice_preset=voice_preset).to(device) | |
# Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way. | |
fine_output = bark.generate( | |
**inputs, coarse_temperature = 0.8, temperature = 0.5, do_sample=True | |
) | |
print("Fine tokens generated") | |
with torch.no_grad(): | |
features = vocos.codes_to_features(fine_output.transpose(0,1)) | |
vocos_waveform = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device)) | |
return (SAMPLE_RATE, vocos_waveform.cpu().squeeze().numpy()) | |
# Gradio blocks demo | |
with gr.Blocks() as demo_blocks: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
inp_text = gr.Textbox(label="Input Text", info="What would you like bark to synthesise?") | |
spk = gr.Dropdown( | |
speaker_embeddings, | |
value=None, | |
label="Acoustic Prompt", | |
info="Default: Unconditional Generation" | |
) | |
btn = gr.Button("Generate Audio!") | |
with gr.Column(): | |
out_audio_vocos = gr.Audio(type="numpy", autoplay=False, label="Generated Audio", show_label=True) | |
btn.click(generate_audio, [inp_text, spk], [out_audio_vocos]) | |
demo_blocks.queue().launch(debug=True) |