Spaces:
Runtime error
Runtime error
File size: 15,558 Bytes
e1f356a 86332dd 835026c e1f356a e06a544 e1f356a 7cf39e5 86332dd 29d9b22 e1f356a 242e308 e1f356a 7cf39e5 a39eb51 7cf39e5 7e4fb7d 0001c43 7e4fb7d 0001c43 7e4fb7d 0001c43 aedba51 7e4fb7d d87354d 7cf39e5 a39eb51 7cf39e5 fcb8c90 7cf39e5 fcb8c90 7cf39e5 d87354d 46cc42f 9df3294 46cc42f 173ab3f 9df3294 46cc42f 6d933ce e06a544 1be80ae e06a544 c18f316 b16e1f9 e1d439c a8373d8 e1d439c c18f316 a8373d8 c18f316 a8373d8 c18f316 232ddba a8373d8 e1d439c 6d933ce e1d439c e06a544 e1f356a d943c60 e1f356a b5b79c5 d9cf5d2 b5b79c5 d9cf5d2 b5b79c5 d9cf5d2 e1f356a 9d003fe e1f356a 15d9ca5 e1f356a c5bd46f e1f356a 431c1da 3e1467e e1f356a 431c1da b17ed6b 431c1da e92cabb 431c1da e92cabb 431c1da e1f356a 37e985c e1f356a 13f042b e1f356a d943c60 e1f356a 15d9ca5 e1f356a c5bd46f 431c1da e1f356a 13f042b e1f356a c3d04a2 e1f356a 15d9ca5 e1f356a 13f042b e1f356a 3e1467e e1f356a 29d9b22 03ca010 b5b79c5 03ca010 d9cf5d2 03ca010 f444781 03ca010 d9cf5d2 03ca010 29d9b22 6971ec3 446f8d3 ac1285e 0147802 33fa1b3 b002a87 ac1285e 826286f 062a4a7 826286f 0935784 826286f 062a4a7 446f8d3 826286f e06a544 1be80ae d271513 e06a544 d271513 7e4fb7d 4cde5ef 7e4fb7d 8fac38f e37b210 1be80ae 33fa1b3 dbc3d8f 33fa1b3 7cf39e5 22c4b1b 1090ea0 0bb0248 4d4650b 4098470 4d4650b 0bb0248 1090ea0 0bb0248 431c1da c392ffa 6971ec3 29d9b22 c5bd46f 6971ec3 1b2210b 33fa1b3 1be80ae 33fa1b3 4098470 33fa1b3 e1f356a 7f6ba54 2f373b5 fa221ab e1f356a 917f3b4 05ea95f e1f356a 05d25f5 7f6ba54 05d25f5 c392ffa 29d9b22 05d25f5 e1f356a 05d25f5 da0e32f 3e662a4 05ea95f 446f8d3 b9f09bd 826286f 3e662a4 e06a544 826286f cac16a8 6d933ce 29d9b22 05d25f5 7f6ba54 7cf39e5 446f8d3 7cf39e5 e1f356a 03ca010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
import gradio as gr
#import urllib.request
import requests
import bs4
import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
from pypdf import PdfReader
import uuid
#from query import tasks
from gradio_client import Client
from agent import (
PREFIX,
GET_CHART,
COMPRESS_DATA_PROMPT,
COMPRESS_DATA_PROMPT_SMALL,
LOG_PROMPT,
LOG_RESPONSE,
)
api=HfApi()
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def sort_fn(inp):
client_sort = Client("Omnibus/sort_document")
sen,nouns = client_sort.predict(
f"{inp}", # str in 'Paste Text' Textbox component
api_name="/sort_doc"
)
return nouns
def find_all(url):
return_list=[]
print (url)
#if action_input in query.tasks:
print (f"trying URL:: {url}")
try:
if url != "" and url != None:
out = []
source = requests.get(url)
#source = urllib.request.urlopen(url).read()
soup = bs4.BeautifulSoup(source.content,'lxml')
rawp=(f'RAW TEXT RETURNED: {soup.text}')
cnt=0
cnt+=len(rawp)
out.append(rawp)
out.append("HTML fragments: ")
q=("a","p","span","content","article")
for p in soup.find_all("a"):
out.append([{"LINK TITLE":p.get('title'),"URL":p.get('href'),"STRING":p.string}])
print(rawp)
return True, rawp
else:
return False, "Enter Valid URL"
except Exception as e:
print (e)
return False, f'Error: {e}'
#else:
# history = "observation: The search query I used did not return a valid response"
return "MAIN", None, history, task
FIND_KEYWORDS="""Find keywords from the dictionary of provided keywords that are relevant to the users query.
Return the keyword:value pairs from the list in the form of a JSON file output.
dictionary:
{keywords}
user query:
"""
def find_keyword_fn(c,inp,data):
data=str(data)
seed=random.randint(1,1000000000)
divr=int(c)/20000
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
out = []
s=0
e=chunk
print(f'e:: {e}')
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = data[s:e]
resp = run_gpt(
FIND_KEYWORDS,
stop_tokens=[],
max_tokens=8192,
seed=seed,
keywords=data,
).strip("\n")
out.append(resp)
#new_history = resp
print (resp)
#out+=resp
e=e+chunk
s=s+chunk
return out
def read_txt(txt_path):
text=""
with open(txt_path,"r") as f:
text = f.read()
f.close()
print (text)
return text
def read_pdf(pdf_path):
text=""
reader = PdfReader(f'{pdf_path}')
number_of_pages = len(reader.pages)
for i in range(number_of_pages):
page = reader.pages[i]
text = f'{text}\n{page.extract_text()}'
print (text)
return text
error_box=[]
def read_pdf_online(url):
uid=uuid.uuid4()
print(f"reading {url}")
response = requests.get(url, stream=True)
print(response.status_code)
text=""
#################
#####################
try:
if response.status_code == 200:
with open("test.pdf", "wb") as f:
f.write(response.content)
#f.close()
#out = Path("./data.pdf")
#print (out)
reader = PdfReader("test.pdf")
number_of_pages = len(reader.pages)
print(number_of_pages)
for i in range(number_of_pages):
page = reader.pages[i]
text = f'{text}\n{page.extract_text()}'
print(f"PDF_TEXT:: {text}")
return text
else:
text = response.status_code
error_box.append(url)
print(text)
return text
except Exception as e:
print (e)
return e
VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 20000
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt_no_prefix(
prompt_template,
stop_tokens,
max_tokens,
seed,
**prompt_kwargs,
):
print(seed)
try:
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = prompt_template.format(**prompt_kwargs)
#if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
#if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
except Exception as e:
print(f'no_prefix_error:: {e}')
return "Error"
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
seed,
**prompt_kwargs,
):
print(seed)
timestamp=datetime.datetime.now()
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
timestamp=timestamp,
purpose="Compile the provided data and complete the users task"
) + prompt_template.format(**prompt_kwargs)
#if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
#yield resp
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_data(c, instruct, history):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT_SMALL,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge="",
history=hist,
).strip("\n")
out.append(resp)
#new_history = resp
print (resp)
#out+=resp
e=e+chunk
s=s+chunk
return out
def compress_data_og(c, instruct, history):
seed=random.randint(1,1000000000)
print (c)
#tot=len(purpose)
#print(tot)
divr=int(c)/MAX_DATA
divi=int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
print(f'chunk:: {chunk}')
print(f'divr:: {divr}')
print (f'divi:: {divi}')
out = []
#out=""
s=0
e=chunk
print(f'e:: {e}')
new_history=""
#task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
for z in range(divi):
print(f's:e :: {s}:{e}')
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge=new_history,
history=hist,
).strip("\n")
new_history = resp
print (resp)
out+=resp
e=e+chunk
s=s+chunk
'''
resp = run_gpt(
COMPRESS_DATA_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge=new_history,
history="All data has been recieved.",
)'''
print ("final" + resp)
#history = "observation: {}\n".format(resp)
return resp
def get_chart(inp):
seed=random.randint(1,1000000000)
try:
resp = run_gpt_no_prefix(
GET_CHART,
stop_tokens=[],
max_tokens=8192,
seed=seed,
inp=inp,
).strip("\n")
print(resp)
except Exception as e:
print(f'Error:: {e}')
resp = e
return resp
def format_json(inp):
print("FORMATTING:::")
print(type(inp))
print("###########")
print(inp)
print("###########")
print("###########")
new_str=""
matches=["```","#","//"]
for i,line in enumerate(inp):
line = line.strip()
print(line)
#if not any(x in line for x in matches):
new_str+=line.strip("\n").strip("```").strip("#").strip("//")
print("###########")
print("###########")
#inp = inp.strip("<\s>")
new_str=new_str.strip("</s>")
out_json=eval(new_str)
print(out_json)
print("###########")
print("###########")
return out_json
def summarize(inp,history,report_check,chart_check,data=None,files=None,directory=None,url=None,pdf_url=None,pdf_batch=None):
json_box=[]
error_box=""
if inp == "":
inp = "Process this data"
history.clear()
history = [(inp,"Working on it...")]
yield "",history,error_box,json_box
if pdf_batch.startswith("http"):
c=0
data=""
for i in str(pdf_batch):
if i==",":
c+=1
print (f'c:: {c}')
try:
for i in range(c+1):
batch_url = pdf_batch.split(",",c)[i]
bb = read_pdf_online(batch_url)
data=f'{data}\nFile Name URL ({batch_url}):\n{bb}'
except Exception as e:
print(e)
#data=f'{data}\nError reading URL ({batch_url})'
if directory:
for ea in directory:
print(ea)
if pdf_url.startswith("http"):
print("PDF_URL")
out = read_pdf_online(pdf_url)
data=out
if url.startswith("http"):
val, out = find_all(url)
if not val:
data="Error"
rawp = str(out)
else:
data=out
if files:
for i, file in enumerate(files):
try:
print (file)
if file.endswith(".pdf"):
zz=read_pdf(file)
print (zz)
data=f'{data}\nFile Name ({file}):\n{zz}'
elif file.endswith(".txt"):
zz=read_txt(file)
print (zz)
data=f'{data}\nFile Name ({file}):\n{zz}'
except Exception as e:
data=f'{data}\nError opening File Name ({file})'
print (e)
if data != "Error" and data != "":
print(inp)
out = str(data)
rl = len(out)
print(f'rl:: {rl}')
c=1
for i in str(out):
if i == " " or i=="," or i=="\n":
c +=1
print (f'c:: {c}')
#json_start = sort_fn(out)
#json_out = find_keyword_fn(c,inp,json_start)
json_out = compress_data(c,inp,out)
#json_box.append(json_out)
#json_object = json.dumps(eval(json_out), indent=4)
#json_box.append(json_out)
print(f'JSON_BOX:: {json_out}')
# Writing to sample.json
#with open("tmp.json", "w") as outfile:
# outfile.write(json_object)
#outfile.close()
#json_box.append(json_out)
out = str(json_out)
if report_check:
rl = len(out)
print(f'rl:: {rl}')
c=1
for i in str(out):
if i == " " or i=="," or i=="\n":
c +=1
print (f'c2:: {c}')
rawp = compress_data_og(c,inp,out)
else:
rawp = out
try:
json_out=format_json(json_out)
except Exception as e:
print (e)
if chart_check:
print (f"making chart from ::: {rawp}")
error_box = get_chart(str(json_out))
print(error_box)
else:
rawp = "Provide a valid data source"
#print (rawp)
#print (f'out:: {out}')
#history += "observation: the search results are:\n {}\n".format(out)
#task = "complete?"
history.clear()
history.append((inp,rawp))
yield "", history,error_box,json_out
#################################
def clear_fn():
return "",[(None,None)]
with gr.Blocks() as app:
gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer + Web</h1><h3>Summarize Data of unlimited length</h3>""")
chatbot = gr.Chatbot(label="Mixtral 8x7B Chatbot",show_copy_button=True)
with gr.Row():
with gr.Column(scale=3):
prompt=gr.Textbox(label = "Instructions (optional)")
with gr.Column(scale=1):
report_check=gr.Checkbox(label="Return Report", value=True)
chart_check=gr.Checkbox(label="Return Chart", value=True)
button=gr.Button()
#models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
with gr.Row():
stop_button=gr.Button("Stop")
clear_btn = gr.Button("Clear")
with gr.Row():
with gr.Tab("Text"):
data=gr.Textbox(label="Input Data (paste text)", lines=6)
with gr.Tab("File"):
file=gr.Files(label="Input File(s) (.pdf .txt)")
with gr.Tab("Folder"):
directory=gr.File(label="Folder", file_count='directory')
with gr.Tab("Raw HTML"):
url = gr.Textbox(label="URL")
with gr.Tab("PDF URL"):
pdf_url = gr.Textbox(label="PDF URL")
with gr.Tab("PDF Batch"):
pdf_batch = gr.Textbox(label="PDF URL Batch (comma separated)")
e_box=gr.Textbox()
json_out=gr.JSON()
#text=gr.JSON()
#inp_query.change(search_models,inp_query,models_dd)
clear_btn.click(clear_fn,None,[prompt,chatbot])
#go=button.click(summarize,[prompt,chatbot,report_check,chart_check,data,file,directory,url,pdf_url,pdf_batch],[prompt,chatbot,e_box,json_out])
go=button.click(summarize,[prompt,chatbot,report_check,chart_check,data,file,directory,url,pdf_url,pdf_batch],[prompt,chatbot,e_box,json_out])
stop_button.click(None,None,None,cancels=[go])
app.queue(default_concurrency_limit=20).launch(show_api=False)
|