Spaces:
Sleeping
Sleeping
File size: 6,541 Bytes
1f72938 1c82367 1f72938 9312707 1f72938 9687104 1f72938 9312707 1f72938 1c82367 9687104 1c82367 1f72938 9687104 1f72938 9687104 1f72938 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import face_recognition
import cv2
import numpy as np
import imageSegmentation
from mediapipe.tasks.python import vision
import Visualization_utilities as vis
import time
# Get a reference to webcam #0 (the default one)
# video_capture = cv2.VideoCapture(0)
# Load a sample picture and learn how to recognize it.
def get_face_encoding(path):
print(f'path: {path}')
print('hello')
HKID_cropped = imageSegmentation.auto_cropping(path)
cv2.imwrite('saved/HKID.jpg', HKID_cropped)
HKID_image = face_recognition.load_image_file("saved/HKID.jpg")
HKID_face_encoding = face_recognition.face_encodings(HKID_image)[0]
return HKID_face_encoding
# HKID_image = face_recognition.load_image_file("saved/HKID.jpg")
# HKID_face_encoding = face_recognition.face_encodings(HKID_image)[0]
# Create arrays of known face encodings and their names
# known_face_encodings = [
# HKID_face_encoding
# ]
# known_face_names = [
# "Marco"
# ]
# Initialize some variables
# face_locations = []
# face_encodings = []
# face_names = []
# process_this_frame = True
# score = []
# faces = 0 # number of faces
# while True:
# # Grab a single frame of video
# ret, frame = video_capture.read()
# # # Draw a label with a name below the face
# # cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
# # font = cv2.FONT_HERSHEY_DUPLEX
# # cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# # Display the resulting image
# cv2.imshow('Video', frame)
# # Hit 'q' on the keyboard to quit!
# if cv2.waitKey(1) & 0xFF == ord('q'):
# break
# frames are the snapshot of the video
def process_frame(frame, process_this_frame, face_locations, faces, face_names, score):
hkid_face_encoding = get_face_encoding("image")
print(f'encoding: {hkid_face_encoding}')
known_face_encodings = [
hkid_face_encoding
]
known_face_names = [
"recognized"
]
# Only process every other frame of video to save time
if process_this_frame:
face_names = []
# Resize frame of video to 1/4 size for faster face recognition processing
# if frame != None:
# print(f'frame: {len(frame)}')
# try:
# small_frame = cv2.imread(image_dir)
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# else:
# print('fram has nth')
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = cv2.cvtColor(small_frame, cv2.COLOR_BGR2RGB)
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
faces = len(face_encodings) # number of faces
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
print(face_distances)
if matches[best_match_index] and face_distances[best_match_index] < 0.45:
score.append(face_distances[best_match_index])
name = known_face_names[best_match_index]
else:
score = []
face_names.append(name)
# if len(score) > 20:
# avg_score = sum(score) / len(score)
# Display the results
if faces > 1 :
# Define the text and font properties
text = "More than 1 person detected!"
font = cv2.FONT_HERSHEY_DUPLEX
font_scale = 1
font_thickness = 2
# Calculate the text size
window_height = frame.shape[0]
window_width = frame.shape[1]
text_size, _ = cv2.getTextSize(text, font, font_scale, font_thickness)
# Calculate the text position
text_x = int((window_width - text_size[0]) / 2)
text_y = window_height - int(text_size[1] / 2)
cv2.putText(frame, text, (text_x, text_y), font, font_scale, (255, 255, 255), font_thickness, cv2.LINE_AA)
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (65, 181, 41), 4)
# Define the name box properties
name_box_color = (44, 254, 0)
name_box_alpha = 0.7
name_box_thickness = -1
# Define the text properties
font = cv2.FONT_HERSHEY_TRIPLEX
font_scale = 1
font_thickness = 2
text_color = (255, 255, 255)
# Calculate the text size
text_width, text_height = cv2.getTextSize(name, font, font_scale, font_thickness)[0]
# Draw the name box
cv2.rectangle(frame, (left, bottom - 35), (right, bottom),
name_box_color, name_box_thickness)
cv2.rectangle(frame, (left, bottom - 35), (right, bottom),
name_box_color, cv2.FILLED)
# Draw the name text
cv2.putText(frame, name, (left + 70, bottom - 6), font, font_scale, text_color, font_thickness)
process_this_frame = process_this_frame
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
return frame, process_this_frame, face_locations, faces, face_names, score
def convert_distance_to_percentage(distance, threshold):
if distance < threshold:
score = 80
score += distance / 0.45 * 20
else:
score = (1 - distance) * 100
return score
# percent = convert_distance_to_percentage(avg_score, 0.45)
# print(f'avg_score = {percent:.2f}% : Approved!')
# # Release handle to the webcam
# video_capture.release()
# cv2.destroyAllWindows() |