File size: 6,541 Bytes
1f72938
 
 
 
 
 
 
 
1c82367
1f72938
 
 
 
 
 
 
9312707
 
1f72938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9687104
1f72938
 
 
 
9312707
 
1f72938
 
 
 
 
 
 
 
 
 
 
 
1c82367
 
 
 
9687104
1c82367
 
1f72938
 
9687104
1f72938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9687104
 
 
 
1f72938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import face_recognition
import cv2
import numpy as np

import imageSegmentation

from mediapipe.tasks.python import vision
import Visualization_utilities as vis
import time

# Get a reference to webcam #0 (the default one)
# video_capture = cv2.VideoCapture(0)

# Load a sample picture and learn how to recognize it.

def get_face_encoding(path):
    print(f'path: {path}')
    print('hello')
    HKID_cropped = imageSegmentation.auto_cropping(path)
    cv2.imwrite('saved/HKID.jpg', HKID_cropped)
    HKID_image = face_recognition.load_image_file("saved/HKID.jpg")
    HKID_face_encoding = face_recognition.face_encodings(HKID_image)[0]
    return HKID_face_encoding

# HKID_image = face_recognition.load_image_file("saved/HKID.jpg")
# HKID_face_encoding = face_recognition.face_encodings(HKID_image)[0]

# Create arrays of known face encodings and their names
# known_face_encodings = [
#     HKID_face_encoding
# ]
# known_face_names = [
#     "Marco"
# ]

# Initialize some variables
# face_locations = []
# face_encodings = []
# face_names = []
# process_this_frame = True

# score = []

# faces = 0 # number of faces

# while True:
#     # Grab a single frame of video
#     ret, frame = video_capture.read()

    

#         # # Draw a label with a name below the face
#         # cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
#         # font = cv2.FONT_HERSHEY_DUPLEX
#         # cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)

#     # Display the resulting image
#     cv2.imshow('Video', frame)

#     # Hit 'q' on the keyboard to quit!
#     if cv2.waitKey(1) & 0xFF == ord('q'):
#         break

# frames are the snapshot of the video
def process_frame(frame, process_this_frame, face_locations, faces, face_names, score):

    hkid_face_encoding = get_face_encoding("image")

    print(f'encoding: {hkid_face_encoding}')

    known_face_encodings = [
        hkid_face_encoding
    ]

    known_face_names = [
        "recognized"
    ]

    # Only process every other frame of video to save time
    if process_this_frame:
        face_names = []
        # Resize frame of video to 1/4 size for faster face recognition processing
        # if frame != None:
        #     print(f'frame: {len(frame)}')
            # try: 
            #     small_frame = cv2.imread(image_dir)
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
        # else:
        #     print('fram has nth')

        # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
        rgb_small_frame = cv2.cvtColor(small_frame, cv2.COLOR_BGR2RGB)
        
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(rgb_small_frame)
        face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
        faces = len(face_encodings) # number of faces

        for face_encoding in face_encodings:
            # See if the face is a match for the known face(s)
            matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
            name = "Unknown"

            # # If a match was found in known_face_encodings, just use the first one.
            # if True in matches:
            #     first_match_index = matches.index(True)
            #     name = known_face_names[first_match_index]

            # Or instead, use the known face with the smallest distance to the new face
            face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
            best_match_index = np.argmin(face_distances)
            print(face_distances)
            if matches[best_match_index] and face_distances[best_match_index] < 0.45:
                score.append(face_distances[best_match_index])
                name = known_face_names[best_match_index]
            else:
                score = []

            face_names.append(name)

    # if len(score) > 20:
    #     avg_score =  sum(score) / len(score)

    # Display the results
    if faces > 1 :
        # Define the text and font properties
        text = "More than 1 person detected!"
        font = cv2.FONT_HERSHEY_DUPLEX
        font_scale = 1
        font_thickness = 2

        # Calculate the text size
        window_height = frame.shape[0]
        window_width = frame.shape[1]
        text_size, _ = cv2.getTextSize(text, font, font_scale, font_thickness)

        # Calculate the text position
        text_x = int((window_width - text_size[0]) / 2)
        text_y = window_height - int(text_size[1] / 2)

        cv2.putText(frame, text, (text_x, text_y), font, font_scale, (255, 255, 255), font_thickness, cv2.LINE_AA)
        
    for (top, right, bottom, left), name in zip(face_locations, face_names):
        # Scale back up face locations since the frame we detected in was scaled to 1/4 size
        top *= 4
        right *= 4
        bottom *= 4
        left *= 4

        # Draw a box around the face
        cv2.rectangle(frame, (left, top), (right, bottom), (65, 181, 41), 4)

        # Define the name box properties
        name_box_color = (44, 254, 0)
        name_box_alpha = 0.7
        name_box_thickness = -1

        # Define the text properties
        font = cv2.FONT_HERSHEY_TRIPLEX
        font_scale = 1
        font_thickness = 2
        text_color = (255, 255, 255)

        # Calculate the text size
        text_width, text_height = cv2.getTextSize(name, font, font_scale, font_thickness)[0]

        # Draw the name box
        cv2.rectangle(frame, (left, bottom - 35), (right, bottom),
                    name_box_color, name_box_thickness)
        cv2.rectangle(frame, (left, bottom - 35), (right, bottom),
                    name_box_color, cv2.FILLED)

        # Draw the name text
        cv2.putText(frame, name, (left + 70, bottom - 6), font, font_scale, text_color, font_thickness)

    process_this_frame = process_this_frame

    frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)

    return frame, process_this_frame, face_locations, faces, face_names, score

def convert_distance_to_percentage(distance, threshold):
    if distance < threshold:
        score = 80
        score += distance / 0.45 * 20
    else:
        score = (1 - distance) * 100
    return score

# percent = convert_distance_to_percentage(avg_score, 0.45)

# print(f'avg_score = {percent:.2f}% : Approved!')

# # Release handle to the webcam
# video_capture.release()
# cv2.destroyAllWindows()