import cv2 import numpy as np import streamlit as st @st.cache_data def bw_filter(img): img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return img_gray @st.cache_data def vignette(img, level=2): height, width = img.shape[:2] # Generate vignette mask using Gaussian kernels. X_resultant_kernel = cv2.getGaussianKernel(width, width / level) Y_resultant_kernel = cv2.getGaussianKernel(height, height / level) # Generating resultant_kernel matrix. kernel = Y_resultant_kernel * X_resultant_kernel.T mask = kernel / kernel.max() img_vignette = np.copy(img) # Apply the mask to each channel in the input image. for i in range(3): img_vignette[:, :, i] = img_vignette[:, :, i] * mask return img_vignette @st.cache_data def sepia(img): img_sepia = img.copy() # Converting to RGB as sepia matrix below is for RGB. img_sepia = cv2.cvtColor(img_sepia, cv2.COLOR_BGR2RGB) img_sepia = np.array(img_sepia, dtype=np.float64) img_sepia = cv2.transform( img_sepia, np.matrix([[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]]) ) # Clip values to the range [0, 255]. img_sepia = np.clip(img_sepia, 0, 255) img_sepia = np.array(img_sepia, dtype=np.uint8) img_sepia = cv2.cvtColor(img_sepia, cv2.COLOR_RGB2BGR) return img_sepia @st.cache_data def pencil_sketch(img, ksize=5): img_blur = cv2.GaussianBlur(img, (ksize, ksize), 0, 0) img_sketch, _ = cv2.pencilSketch(img_blur) return img_sketch