File size: 17,698 Bytes
0f90f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#!/usr/bin/env python3
import cv2
import numpy as np
import sklearn
import torch
import os
import pickle
import pandas as pd
import matplotlib.pyplot as plt
from joblib import Parallel, delayed

from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset, load_image
from saicinpainting.evaluation.losses.fid.inception import InceptionV3
from saicinpainting.evaluation.utils import load_yaml
from saicinpainting.training.visualizers.base import visualize_mask_and_images


def draw_score(img, score):
    img = np.transpose(img, (1, 2, 0))
    cv2.putText(img, f'{score:.2f}',
                (40, 40),
                cv2.FONT_HERSHEY_SIMPLEX,
                1,
                (0, 1, 0),
                thickness=3)
    img = np.transpose(img, (2, 0, 1))
    return img


def save_global_samples(global_mask_fnames, mask2real_fname, mask2fake_fname, out_dir, real_scores_by_fname, fake_scores_by_fname):
    for cur_mask_fname in global_mask_fnames:
        cur_real_fname = mask2real_fname[cur_mask_fname]
        orig_img = load_image(cur_real_fname, mode='RGB')
        fake_img = load_image(mask2fake_fname[cur_mask_fname], mode='RGB')[:, :orig_img.shape[1], :orig_img.shape[2]]
        mask = load_image(cur_mask_fname, mode='L')[None, ...]

        draw_score(orig_img, real_scores_by_fname.loc[cur_real_fname, 'real_score'])
        draw_score(fake_img, fake_scores_by_fname.loc[cur_mask_fname, 'fake_score'])

        cur_grid = visualize_mask_and_images(dict(image=orig_img, mask=mask, fake=fake_img),
                                             keys=['image', 'fake'],
                                             last_without_mask=True)
        cur_grid = np.clip(cur_grid * 255, 0, 255).astype('uint8')
        cur_grid = cv2.cvtColor(cur_grid, cv2.COLOR_RGB2BGR)
        cv2.imwrite(os.path.join(out_dir, os.path.splitext(os.path.basename(cur_mask_fname))[0] + '.jpg'),
                    cur_grid)


def save_samples_by_real(worst_best_by_real, mask2fake_fname, fake_info, out_dir):
    for real_fname in worst_best_by_real.index:
        worst_mask_path = worst_best_by_real.loc[real_fname, 'worst']
        best_mask_path = worst_best_by_real.loc[real_fname, 'best']
        orig_img = load_image(real_fname, mode='RGB')
        worst_mask_img = load_image(worst_mask_path, mode='L')[None, ...]
        worst_fake_img = load_image(mask2fake_fname[worst_mask_path], mode='RGB')[:, :orig_img.shape[1], :orig_img.shape[2]]
        best_mask_img = load_image(best_mask_path, mode='L')[None, ...]
        best_fake_img = load_image(mask2fake_fname[best_mask_path], mode='RGB')[:, :orig_img.shape[1], :orig_img.shape[2]]

        draw_score(orig_img, worst_best_by_real.loc[real_fname, 'real_score'])
        draw_score(worst_fake_img, worst_best_by_real.loc[real_fname, 'worst_score'])
        draw_score(best_fake_img, worst_best_by_real.loc[real_fname, 'best_score'])

        cur_grid = visualize_mask_and_images(dict(image=orig_img, mask=np.zeros_like(worst_mask_img),
                                                  worst_mask=worst_mask_img, worst_img=worst_fake_img,
                                                  best_mask=best_mask_img, best_img=best_fake_img),
                                             keys=['image', 'worst_mask', 'worst_img', 'best_mask', 'best_img'],
                                             rescale_keys=['worst_mask', 'best_mask'],
                                             last_without_mask=True)
        cur_grid = np.clip(cur_grid * 255, 0, 255).astype('uint8')
        cur_grid = cv2.cvtColor(cur_grid, cv2.COLOR_RGB2BGR)
        cv2.imwrite(os.path.join(out_dir,
                                 os.path.splitext(os.path.basename(real_fname))[0] + '.jpg'),
                    cur_grid)

        fig, (ax1, ax2) = plt.subplots(1, 2)
        cur_stat = fake_info[fake_info['real_fname'] == real_fname]
        cur_stat['fake_score'].hist(ax=ax1)
        cur_stat['real_score'].hist(ax=ax2)
        fig.tight_layout()
        fig.savefig(os.path.join(out_dir,
                                 os.path.splitext(os.path.basename(real_fname))[0] + '_scores.png'))
        plt.close(fig)


def extract_overlapping_masks(mask_fnames, cur_i, fake_scores_table, max_overlaps_n=2):
    result_pairs = []
    result_scores = []
    mask_fname_a = mask_fnames[cur_i]
    mask_a = load_image(mask_fname_a, mode='L')[None, ...] > 0.5
    cur_score_a = fake_scores_table.loc[mask_fname_a, 'fake_score']
    for mask_fname_b in mask_fnames[cur_i + 1:]:
        mask_b = load_image(mask_fname_b, mode='L')[None, ...] > 0.5
        if not np.any(mask_a & mask_b):
            continue
        cur_score_b = fake_scores_table.loc[mask_fname_b, 'fake_score']
        result_pairs.append((mask_fname_a, mask_fname_b))
        result_scores.append(cur_score_b - cur_score_a)
        if len(result_pairs) >= max_overlaps_n:
            break
    return result_pairs, result_scores


def main(args):
    config = load_yaml(args.config)

    latents_dir = os.path.join(args.outpath, 'latents')
    os.makedirs(latents_dir, exist_ok=True)
    global_worst_dir = os.path.join(args.outpath, 'global_worst')
    os.makedirs(global_worst_dir, exist_ok=True)
    global_best_dir = os.path.join(args.outpath, 'global_best')
    os.makedirs(global_best_dir, exist_ok=True)
    worst_best_by_best_worst_score_diff_max_dir = os.path.join(args.outpath, 'worst_best_by_real', 'best_worst_score_diff_max')
    os.makedirs(worst_best_by_best_worst_score_diff_max_dir, exist_ok=True)
    worst_best_by_best_worst_score_diff_min_dir = os.path.join(args.outpath, 'worst_best_by_real', 'best_worst_score_diff_min')
    os.makedirs(worst_best_by_best_worst_score_diff_min_dir, exist_ok=True)
    worst_best_by_real_best_score_diff_max_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_best_score_diff_max')
    os.makedirs(worst_best_by_real_best_score_diff_max_dir, exist_ok=True)
    worst_best_by_real_best_score_diff_min_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_best_score_diff_min')
    os.makedirs(worst_best_by_real_best_score_diff_min_dir, exist_ok=True)
    worst_best_by_real_worst_score_diff_max_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_worst_score_diff_max')
    os.makedirs(worst_best_by_real_worst_score_diff_max_dir, exist_ok=True)
    worst_best_by_real_worst_score_diff_min_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_worst_score_diff_min')
    os.makedirs(worst_best_by_real_worst_score_diff_min_dir, exist_ok=True)

    if not args.only_report:
        block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
        inception_model = InceptionV3([block_idx]).eval().cuda()

        dataset = PrecomputedInpaintingResultsDataset(args.datadir, args.predictdir, **config.dataset_kwargs)

        real2vector_cache = {}

        real_features = []
        fake_features = []

        orig_fnames = []
        mask_fnames = []
        mask2real_fname = {}
        mask2fake_fname = {}

        for batch_i, batch in enumerate(dataset):
            orig_img_fname = dataset.img_filenames[batch_i]
            mask_fname = dataset.mask_filenames[batch_i]
            fake_fname = dataset.pred_filenames[batch_i]
            mask2real_fname[mask_fname] = orig_img_fname
            mask2fake_fname[mask_fname] = fake_fname

            cur_real_vector = real2vector_cache.get(orig_img_fname, None)
            if cur_real_vector is None:
                with torch.no_grad():
                    in_img = torch.from_numpy(batch['image'][None, ...]).cuda()
                    cur_real_vector = inception_model(in_img)[0].squeeze(-1).squeeze(-1).cpu().numpy()
                real2vector_cache[orig_img_fname] = cur_real_vector

            pred_img = torch.from_numpy(batch['inpainted'][None, ...]).cuda()
            cur_fake_vector = inception_model(pred_img)[0].squeeze(-1).squeeze(-1).cpu().numpy()

            real_features.append(cur_real_vector)
            fake_features.append(cur_fake_vector)

            orig_fnames.append(orig_img_fname)
            mask_fnames.append(mask_fname)

        ids_features = np.concatenate(real_features + fake_features, axis=0)
        ids_labels = np.array(([1] * len(real_features)) + ([0] * len(fake_features)))

        with open(os.path.join(latents_dir, 'featues.pkl'), 'wb') as f:
            pickle.dump(ids_features, f, protocol=3)
        with open(os.path.join(latents_dir, 'labels.pkl'), 'wb') as f:
            pickle.dump(ids_labels, f, protocol=3)
        with open(os.path.join(latents_dir, 'orig_fnames.pkl'), 'wb') as f:
            pickle.dump(orig_fnames, f, protocol=3)
        with open(os.path.join(latents_dir, 'mask_fnames.pkl'), 'wb') as f:
            pickle.dump(mask_fnames, f, protocol=3)
        with open(os.path.join(latents_dir, 'mask2real_fname.pkl'), 'wb') as f:
            pickle.dump(mask2real_fname, f, protocol=3)
        with open(os.path.join(latents_dir, 'mask2fake_fname.pkl'), 'wb') as f:
            pickle.dump(mask2fake_fname, f, protocol=3)

        svm = sklearn.svm.LinearSVC(dual=False)
        svm.fit(ids_features, ids_labels)

        pred_scores = svm.decision_function(ids_features)
        real_scores = pred_scores[:len(real_features)]
        fake_scores = pred_scores[len(real_features):]

        with open(os.path.join(latents_dir, 'pred_scores.pkl'), 'wb') as f:
            pickle.dump(pred_scores, f, protocol=3)
        with open(os.path.join(latents_dir, 'real_scores.pkl'), 'wb') as f:
            pickle.dump(real_scores, f, protocol=3)
        with open(os.path.join(latents_dir, 'fake_scores.pkl'), 'wb') as f:
            pickle.dump(fake_scores, f, protocol=3)
    else:
        with open(os.path.join(latents_dir, 'orig_fnames.pkl'), 'rb') as f:
            orig_fnames = pickle.load(f)
        with open(os.path.join(latents_dir, 'mask_fnames.pkl'), 'rb') as f:
            mask_fnames = pickle.load(f)
        with open(os.path.join(latents_dir, 'mask2real_fname.pkl'), 'rb') as f:
            mask2real_fname = pickle.load(f)
        with open(os.path.join(latents_dir, 'mask2fake_fname.pkl'), 'rb') as f:
            mask2fake_fname = pickle.load(f)
        with open(os.path.join(latents_dir, 'real_scores.pkl'), 'rb') as f:
            real_scores = pickle.load(f)
        with open(os.path.join(latents_dir, 'fake_scores.pkl'), 'rb') as f:
            fake_scores = pickle.load(f)

    real_info = pd.DataFrame(data=[dict(real_fname=fname,
                                        real_score=score)
                                   for fname, score
                                   in zip(orig_fnames, real_scores)])
    real_info.set_index('real_fname', drop=True, inplace=True)

    fake_info = pd.DataFrame(data=[dict(mask_fname=fname,
                                        fake_fname=mask2fake_fname[fname],
                                        real_fname=mask2real_fname[fname],
                                        fake_score=score)
                                   for fname, score
                                   in zip(mask_fnames, fake_scores)])
    fake_info = fake_info.join(real_info, on='real_fname', how='left')
    fake_info.drop_duplicates(['fake_fname', 'real_fname'], inplace=True)

    fake_stats_by_real = fake_info.groupby('real_fname')['fake_score'].describe()[['mean', 'std']].rename(
        {'mean': 'mean_fake_by_real', 'std': 'std_fake_by_real'}, axis=1)
    fake_info = fake_info.join(fake_stats_by_real, on='real_fname', rsuffix='stat_by_real')
    fake_info.drop_duplicates(['fake_fname', 'real_fname'], inplace=True)
    fake_info.to_csv(os.path.join(latents_dir, 'join_scores_table.csv'), sep='\t', index=False)

    fake_scores_table = fake_info.set_index('mask_fname')['fake_score'].to_frame()
    real_scores_table = fake_info.set_index('real_fname')['real_score'].drop_duplicates().to_frame()

    fig, (ax1, ax2) = plt.subplots(1, 2)
    ax1.hist(fake_scores)
    ax2.hist(real_scores)
    fig.tight_layout()
    fig.savefig(os.path.join(args.outpath, 'global_scores_hist.png'))
    plt.close(fig)

    global_worst_masks = fake_info.sort_values('fake_score', ascending=True)['mask_fname'].iloc[:config.take_global_top].to_list()
    global_best_masks = fake_info.sort_values('fake_score', ascending=False)['mask_fname'].iloc[:config.take_global_top].to_list()
    save_global_samples(global_worst_masks, mask2real_fname, mask2fake_fname, global_worst_dir, real_scores_table, fake_scores_table)
    save_global_samples(global_best_masks, mask2real_fname, mask2fake_fname, global_best_dir, real_scores_table, fake_scores_table)

    # grouped by real
    worst_samples_by_real = fake_info.groupby('real_fname').apply(
        lambda d: d.set_index('mask_fname')['fake_score'].idxmin()).to_frame().rename({0: 'worst'}, axis=1)
    best_samples_by_real = fake_info.groupby('real_fname').apply(
        lambda d: d.set_index('mask_fname')['fake_score'].idxmax()).to_frame().rename({0: 'best'}, axis=1)
    worst_best_by_real = pd.concat([worst_samples_by_real, best_samples_by_real], axis=1)

    worst_best_by_real = worst_best_by_real.join(fake_scores_table.rename({'fake_score': 'worst_score'}, axis=1),
                                                 on='worst')
    worst_best_by_real = worst_best_by_real.join(fake_scores_table.rename({'fake_score': 'best_score'}, axis=1),
                                                 on='best')
    worst_best_by_real = worst_best_by_real.join(real_scores_table)

    worst_best_by_real['best_worst_score_diff'] = worst_best_by_real['best_score'] - worst_best_by_real['worst_score']
    worst_best_by_real['real_best_score_diff'] = worst_best_by_real['real_score'] - worst_best_by_real['best_score']
    worst_best_by_real['real_worst_score_diff'] = worst_best_by_real['real_score'] - worst_best_by_real['worst_score']

    worst_best_by_best_worst_score_diff_min = worst_best_by_real.sort_values('best_worst_score_diff', ascending=True).iloc[:config.take_worst_best_top]
    worst_best_by_best_worst_score_diff_max = worst_best_by_real.sort_values('best_worst_score_diff', ascending=False).iloc[:config.take_worst_best_top]
    save_samples_by_real(worst_best_by_best_worst_score_diff_min, mask2fake_fname, fake_info, worst_best_by_best_worst_score_diff_min_dir)
    save_samples_by_real(worst_best_by_best_worst_score_diff_max, mask2fake_fname, fake_info, worst_best_by_best_worst_score_diff_max_dir)

    worst_best_by_real_best_score_diff_min = worst_best_by_real.sort_values('real_best_score_diff', ascending=True).iloc[:config.take_worst_best_top]
    worst_best_by_real_best_score_diff_max = worst_best_by_real.sort_values('real_best_score_diff', ascending=False).iloc[:config.take_worst_best_top]
    save_samples_by_real(worst_best_by_real_best_score_diff_min, mask2fake_fname, fake_info, worst_best_by_real_best_score_diff_min_dir)
    save_samples_by_real(worst_best_by_real_best_score_diff_max, mask2fake_fname, fake_info, worst_best_by_real_best_score_diff_max_dir)

    worst_best_by_real_worst_score_diff_min = worst_best_by_real.sort_values('real_worst_score_diff', ascending=True).iloc[:config.take_worst_best_top]
    worst_best_by_real_worst_score_diff_max = worst_best_by_real.sort_values('real_worst_score_diff', ascending=False).iloc[:config.take_worst_best_top]
    save_samples_by_real(worst_best_by_real_worst_score_diff_min, mask2fake_fname, fake_info, worst_best_by_real_worst_score_diff_min_dir)
    save_samples_by_real(worst_best_by_real_worst_score_diff_max, mask2fake_fname, fake_info, worst_best_by_real_worst_score_diff_max_dir)

    # analyze what change of mask causes bigger change of score
    overlapping_mask_fname_pairs = []
    overlapping_mask_fname_score_diffs = []
    for cur_real_fname in orig_fnames:
        cur_fakes_info = fake_info[fake_info['real_fname'] == cur_real_fname]
        cur_mask_fnames = sorted(cur_fakes_info['mask_fname'].unique())

        cur_mask_pairs_and_scores = Parallel(args.n_jobs)(
            delayed(extract_overlapping_masks)(cur_mask_fnames, i, fake_scores_table)
            for i in range(len(cur_mask_fnames) - 1)
        )
        for cur_pairs, cur_scores in cur_mask_pairs_and_scores:
            overlapping_mask_fname_pairs.extend(cur_pairs)
            overlapping_mask_fname_score_diffs.extend(cur_scores)

    overlapping_mask_fname_pairs = np.asarray(overlapping_mask_fname_pairs)
    overlapping_mask_fname_score_diffs = np.asarray(overlapping_mask_fname_score_diffs)
    overlapping_sort_idx = np.argsort(overlapping_mask_fname_score_diffs)
    overlapping_mask_fname_pairs = overlapping_mask_fname_pairs[overlapping_sort_idx]
    overlapping_mask_fname_score_diffs = overlapping_mask_fname_score_diffs[overlapping_sort_idx]






if __name__ == '__main__':
    import argparse

    aparser = argparse.ArgumentParser()
    aparser.add_argument('config', type=str, help='Path to config for dataset generation')
    aparser.add_argument('datadir', type=str,
                         help='Path to folder with images and masks (output of gen_mask_dataset.py)')
    aparser.add_argument('predictdir', type=str,
                         help='Path to folder with predicts (e.g. predict_hifill_baseline.py)')
    aparser.add_argument('outpath', type=str, help='Where to put results')
    aparser.add_argument('--only-report', action='store_true',
                         help='Whether to skip prediction and feature extraction, '
                              'load all the possible latents and proceed with report only')
    aparser.add_argument('--n-jobs', type=int, default=8, help='how many processes to use for pair mask mining')

    main(aparser.parse_args())