File size: 27,964 Bytes
0f90f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
# original: https://github.com/NVIDIA/pix2pixHD/blob/master/models/networks.py
import collections
from functools import partial
import functools
import logging
from collections import defaultdict
import numpy as np
import torch.nn as nn
from saicinpainting.training.modules.base import BaseDiscriminator, deconv_factory, get_conv_block_ctor, get_norm_layer, get_activation
from saicinpainting.training.modules.ffc import FFCResnetBlock
from saicinpainting.training.modules.multidilated_conv import MultidilatedConv
class DotDict(defaultdict):
# https://stackoverflow.com/questions/2352181/how-to-use-a-dot-to-access-members-of-dictionary
"""dot.notation access to dictionary attributes"""
__getattr__ = defaultdict.get
__setattr__ = defaultdict.__setitem__
__delattr__ = defaultdict.__delitem__
class Identity(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
class ResnetBlock(nn.Module):
def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False, conv_kind='default',
dilation=1, in_dim=None, groups=1, second_dilation=None):
super(ResnetBlock, self).__init__()
self.in_dim = in_dim
self.dim = dim
if second_dilation is None:
second_dilation = dilation
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout,
conv_kind=conv_kind, dilation=dilation, in_dim=in_dim, groups=groups,
second_dilation=second_dilation)
if self.in_dim is not None:
self.input_conv = nn.Conv2d(in_dim, dim, 1)
self.out_channnels = dim
def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout, conv_kind='default',
dilation=1, in_dim=None, groups=1, second_dilation=1):
conv_layer = get_conv_block_ctor(conv_kind)
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(dilation)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(dilation)]
elif padding_type == 'zero':
p = dilation
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
if in_dim is None:
in_dim = dim
conv_block += [conv_layer(in_dim, dim, kernel_size=3, padding=p, dilation=dilation),
norm_layer(dim),
activation]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(second_dilation)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(second_dilation)]
elif padding_type == 'zero':
p = second_dilation
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [conv_layer(dim, dim, kernel_size=3, padding=p, dilation=second_dilation, groups=groups),
norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
x_before = x
if self.in_dim is not None:
x = self.input_conv(x)
out = x + self.conv_block(x_before)
return out
class ResnetBlock5x5(nn.Module):
def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False, conv_kind='default',
dilation=1, in_dim=None, groups=1, second_dilation=None):
super(ResnetBlock5x5, self).__init__()
self.in_dim = in_dim
self.dim = dim
if second_dilation is None:
second_dilation = dilation
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout,
conv_kind=conv_kind, dilation=dilation, in_dim=in_dim, groups=groups,
second_dilation=second_dilation)
if self.in_dim is not None:
self.input_conv = nn.Conv2d(in_dim, dim, 1)
self.out_channnels = dim
def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout, conv_kind='default',
dilation=1, in_dim=None, groups=1, second_dilation=1):
conv_layer = get_conv_block_ctor(conv_kind)
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(dilation * 2)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(dilation * 2)]
elif padding_type == 'zero':
p = dilation * 2
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
if in_dim is None:
in_dim = dim
conv_block += [conv_layer(in_dim, dim, kernel_size=5, padding=p, dilation=dilation),
norm_layer(dim),
activation]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(second_dilation * 2)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(second_dilation * 2)]
elif padding_type == 'zero':
p = second_dilation * 2
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [conv_layer(dim, dim, kernel_size=5, padding=p, dilation=second_dilation, groups=groups),
norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
x_before = x
if self.in_dim is not None:
x = self.input_conv(x)
out = x + self.conv_block(x_before)
return out
class MultidilatedResnetBlock(nn.Module):
def __init__(self, dim, padding_type, conv_layer, norm_layer, activation=nn.ReLU(True), use_dropout=False):
super().__init__()
self.conv_block = self.build_conv_block(dim, padding_type, conv_layer, norm_layer, activation, use_dropout)
def build_conv_block(self, dim, padding_type, conv_layer, norm_layer, activation, use_dropout, dilation=1):
conv_block = []
conv_block += [conv_layer(dim, dim, kernel_size=3, padding_mode=padding_type),
norm_layer(dim),
activation]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
conv_block += [conv_layer(dim, dim, kernel_size=3, padding_mode=padding_type),
norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return out
class MultiDilatedGlobalGenerator(nn.Module):
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3,
n_blocks=3, norm_layer=nn.BatchNorm2d,
padding_type='reflect', conv_kind='default',
deconv_kind='convtranspose', activation=nn.ReLU(True),
up_norm_layer=nn.BatchNorm2d, affine=None, up_activation=nn.ReLU(True),
add_out_act=True, max_features=1024, multidilation_kwargs={},
ffc_positions=None, ffc_kwargs={}):
assert (n_blocks >= 0)
super().__init__()
conv_layer = get_conv_block_ctor(conv_kind)
resnet_conv_layer = functools.partial(get_conv_block_ctor('multidilated'), **multidilation_kwargs)
norm_layer = get_norm_layer(norm_layer)
if affine is not None:
norm_layer = partial(norm_layer, affine=affine)
up_norm_layer = get_norm_layer(up_norm_layer)
if affine is not None:
up_norm_layer = partial(up_norm_layer, affine=affine)
model = [nn.ReflectionPad2d(3),
conv_layer(input_nc, ngf, kernel_size=7, padding=0),
norm_layer(ngf),
activation]
identity = Identity()
### downsample
for i in range(n_downsampling):
mult = 2 ** i
model += [conv_layer(min(max_features, ngf * mult),
min(max_features, ngf * mult * 2),
kernel_size=3, stride=2, padding=1),
norm_layer(min(max_features, ngf * mult * 2)),
activation]
mult = 2 ** n_downsampling
feats_num_bottleneck = min(max_features, ngf * mult)
### resnet blocks
for i in range(n_blocks):
if ffc_positions is not None and i in ffc_positions:
model += [FFCResnetBlock(feats_num_bottleneck, padding_type, norm_layer, activation_layer=nn.ReLU,
inline=True, **ffc_kwargs)]
model += [MultidilatedResnetBlock(feats_num_bottleneck, padding_type=padding_type,
conv_layer=resnet_conv_layer, activation=activation,
norm_layer=norm_layer)]
### upsample
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
model += deconv_factory(deconv_kind, ngf, mult, up_norm_layer, up_activation, max_features)
model += [nn.ReflectionPad2d(3),
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
if add_out_act:
model.append(get_activation('tanh' if add_out_act is True else add_out_act))
self.model = nn.Sequential(*model)
def forward(self, input):
return self.model(input)
class ConfigGlobalGenerator(nn.Module):
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3,
n_blocks=3, norm_layer=nn.BatchNorm2d,
padding_type='reflect', conv_kind='default',
deconv_kind='convtranspose', activation=nn.ReLU(True),
up_norm_layer=nn.BatchNorm2d, affine=None, up_activation=nn.ReLU(True),
add_out_act=True, max_features=1024,
manual_block_spec=[],
resnet_block_kind='multidilatedresnetblock',
resnet_conv_kind='multidilated',
resnet_dilation=1,
multidilation_kwargs={}):
assert (n_blocks >= 0)
super().__init__()
conv_layer = get_conv_block_ctor(conv_kind)
resnet_conv_layer = functools.partial(get_conv_block_ctor(resnet_conv_kind), **multidilation_kwargs)
norm_layer = get_norm_layer(norm_layer)
if affine is not None:
norm_layer = partial(norm_layer, affine=affine)
up_norm_layer = get_norm_layer(up_norm_layer)
if affine is not None:
up_norm_layer = partial(up_norm_layer, affine=affine)
model = [nn.ReflectionPad2d(3),
conv_layer(input_nc, ngf, kernel_size=7, padding=0),
norm_layer(ngf),
activation]
identity = Identity()
### downsample
for i in range(n_downsampling):
mult = 2 ** i
model += [conv_layer(min(max_features, ngf * mult),
min(max_features, ngf * mult * 2),
kernel_size=3, stride=2, padding=1),
norm_layer(min(max_features, ngf * mult * 2)),
activation]
mult = 2 ** n_downsampling
feats_num_bottleneck = min(max_features, ngf * mult)
if len(manual_block_spec) == 0:
manual_block_spec = [
DotDict(lambda : None, {
'n_blocks': n_blocks,
'use_default': True})
]
### resnet blocks
for block_spec in manual_block_spec:
def make_and_add_blocks(model, block_spec):
block_spec = DotDict(lambda : None, block_spec)
if not block_spec.use_default:
resnet_conv_layer = functools.partial(get_conv_block_ctor(block_spec.resnet_conv_kind), **block_spec.multidilation_kwargs)
resnet_conv_kind = block_spec.resnet_conv_kind
resnet_block_kind = block_spec.resnet_block_kind
if block_spec.resnet_dilation is not None:
resnet_dilation = block_spec.resnet_dilation
for i in range(block_spec.n_blocks):
if resnet_block_kind == "multidilatedresnetblock":
model += [MultidilatedResnetBlock(feats_num_bottleneck, padding_type=padding_type,
conv_layer=resnet_conv_layer, activation=activation,
norm_layer=norm_layer)]
if resnet_block_kind == "resnetblock":
model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
conv_kind=resnet_conv_kind)]
if resnet_block_kind == "resnetblock5x5":
model += [ResnetBlock5x5(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
conv_kind=resnet_conv_kind)]
if resnet_block_kind == "resnetblockdwdil":
model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
conv_kind=resnet_conv_kind, dilation=resnet_dilation, second_dilation=resnet_dilation)]
make_and_add_blocks(model, block_spec)
### upsample
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
model += deconv_factory(deconv_kind, ngf, mult, up_norm_layer, up_activation, max_features)
model += [nn.ReflectionPad2d(3),
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
if add_out_act:
model.append(get_activation('tanh' if add_out_act is True else add_out_act))
self.model = nn.Sequential(*model)
def forward(self, input):
return self.model(input)
def make_dil_blocks(dilated_blocks_n, dilation_block_kind, dilated_block_kwargs):
blocks = []
for i in range(dilated_blocks_n):
if dilation_block_kind == 'simple':
blocks.append(ResnetBlock(**dilated_block_kwargs, dilation=2 ** (i + 1)))
elif dilation_block_kind == 'multi':
blocks.append(MultidilatedResnetBlock(**dilated_block_kwargs))
else:
raise ValueError(f'dilation_block_kind could not be "{dilation_block_kind}"')
return blocks
class GlobalGenerator(nn.Module):
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
padding_type='reflect', conv_kind='default', activation=nn.ReLU(True),
up_norm_layer=nn.BatchNorm2d, affine=None,
up_activation=nn.ReLU(True), dilated_blocks_n=0, dilated_blocks_n_start=0,
dilated_blocks_n_middle=0,
add_out_act=True,
max_features=1024, is_resblock_depthwise=False,
ffc_positions=None, ffc_kwargs={}, dilation=1, second_dilation=None,
dilation_block_kind='simple', multidilation_kwargs={}):
assert (n_blocks >= 0)
super().__init__()
conv_layer = get_conv_block_ctor(conv_kind)
norm_layer = get_norm_layer(norm_layer)
if affine is not None:
norm_layer = partial(norm_layer, affine=affine)
up_norm_layer = get_norm_layer(up_norm_layer)
if affine is not None:
up_norm_layer = partial(up_norm_layer, affine=affine)
if ffc_positions is not None:
ffc_positions = collections.Counter(ffc_positions)
model = [nn.ReflectionPad2d(3),
conv_layer(input_nc, ngf, kernel_size=7, padding=0),
norm_layer(ngf),
activation]
identity = Identity()
### downsample
for i in range(n_downsampling):
mult = 2 ** i
model += [conv_layer(min(max_features, ngf * mult),
min(max_features, ngf * mult * 2),
kernel_size=3, stride=2, padding=1),
norm_layer(min(max_features, ngf * mult * 2)),
activation]
mult = 2 ** n_downsampling
feats_num_bottleneck = min(max_features, ngf * mult)
dilated_block_kwargs = dict(dim=feats_num_bottleneck, padding_type=padding_type,
activation=activation, norm_layer=norm_layer)
if dilation_block_kind == 'simple':
dilated_block_kwargs['conv_kind'] = conv_kind
elif dilation_block_kind == 'multi':
dilated_block_kwargs['conv_layer'] = functools.partial(
get_conv_block_ctor('multidilated'), **multidilation_kwargs)
# dilated blocks at the start of the bottleneck sausage
if dilated_blocks_n_start is not None and dilated_blocks_n_start > 0:
model += make_dil_blocks(dilated_blocks_n_start, dilation_block_kind, dilated_block_kwargs)
# resnet blocks
for i in range(n_blocks):
# dilated blocks at the middle of the bottleneck sausage
if i == n_blocks // 2 and dilated_blocks_n_middle is not None and dilated_blocks_n_middle > 0:
model += make_dil_blocks(dilated_blocks_n_middle, dilation_block_kind, dilated_block_kwargs)
if ffc_positions is not None and i in ffc_positions:
for _ in range(ffc_positions[i]): # same position can occur more than once
model += [FFCResnetBlock(feats_num_bottleneck, padding_type, norm_layer, activation_layer=nn.ReLU,
inline=True, **ffc_kwargs)]
if is_resblock_depthwise:
resblock_groups = feats_num_bottleneck
else:
resblock_groups = 1
model += [ResnetBlock(feats_num_bottleneck, padding_type=padding_type, activation=activation,
norm_layer=norm_layer, conv_kind=conv_kind, groups=resblock_groups,
dilation=dilation, second_dilation=second_dilation)]
# dilated blocks at the end of the bottleneck sausage
if dilated_blocks_n is not None and dilated_blocks_n > 0:
model += make_dil_blocks(dilated_blocks_n, dilation_block_kind, dilated_block_kwargs)
# upsample
for i in range(n_downsampling):
mult = 2 ** (n_downsampling - i)
model += [nn.ConvTranspose2d(min(max_features, ngf * mult),
min(max_features, int(ngf * mult / 2)),
kernel_size=3, stride=2, padding=1, output_padding=1),
up_norm_layer(min(max_features, int(ngf * mult / 2))),
up_activation]
model += [nn.ReflectionPad2d(3),
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
if add_out_act:
model.append(get_activation('tanh' if add_out_act is True else add_out_act))
self.model = nn.Sequential(*model)
def forward(self, input):
return self.model(input)
class GlobalGeneratorGated(GlobalGenerator):
def __init__(self, *args, **kwargs):
real_kwargs=dict(
conv_kind='gated_bn_relu',
activation=nn.Identity(),
norm_layer=nn.Identity
)
real_kwargs.update(kwargs)
super().__init__(*args, **real_kwargs)
class GlobalGeneratorFromSuperChannels(nn.Module):
def __init__(self, input_nc, output_nc, n_downsampling, n_blocks, super_channels, norm_layer="bn", padding_type='reflect', add_out_act=True):
super().__init__()
self.n_downsampling = n_downsampling
norm_layer = get_norm_layer(norm_layer)
if type(norm_layer) == functools.partial:
use_bias = (norm_layer.func == nn.InstanceNorm2d)
else:
use_bias = (norm_layer == nn.InstanceNorm2d)
channels = self.convert_super_channels(super_channels)
self.channels = channels
model = [nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, channels[0], kernel_size=7, padding=0, bias=use_bias),
norm_layer(channels[0]),
nn.ReLU(True)]
for i in range(n_downsampling): # add downsampling layers
mult = 2 ** i
model += [nn.Conv2d(channels[0+i], channels[1+i], kernel_size=3, stride=2, padding=1, bias=use_bias),
norm_layer(channels[1+i]),
nn.ReLU(True)]
mult = 2 ** n_downsampling
n_blocks1 = n_blocks // 3
n_blocks2 = n_blocks1
n_blocks3 = n_blocks - n_blocks1 - n_blocks2
for i in range(n_blocks1):
c = n_downsampling
dim = channels[c]
model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer)]
for i in range(n_blocks2):
c = n_downsampling+1
dim = channels[c]
kwargs = {}
if i == 0:
kwargs = {"in_dim": channels[c-1]}
model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer, **kwargs)]
for i in range(n_blocks3):
c = n_downsampling+2
dim = channels[c]
kwargs = {}
if i == 0:
kwargs = {"in_dim": channels[c-1]}
model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer, **kwargs)]
for i in range(n_downsampling): # add upsampling layers
mult = 2 ** (n_downsampling - i)
model += [nn.ConvTranspose2d(channels[n_downsampling+3+i],
channels[n_downsampling+3+i+1],
kernel_size=3, stride=2,
padding=1, output_padding=1,
bias=use_bias),
norm_layer(channels[n_downsampling+3+i+1]),
nn.ReLU(True)]
model += [nn.ReflectionPad2d(3)]
model += [nn.Conv2d(channels[2*n_downsampling+3], output_nc, kernel_size=7, padding=0)]
if add_out_act:
model.append(get_activation('tanh' if add_out_act is True else add_out_act))
self.model = nn.Sequential(*model)
def convert_super_channels(self, super_channels):
n_downsampling = self.n_downsampling
result = []
cnt = 0
if n_downsampling == 2:
N1 = 10
elif n_downsampling == 3:
N1 = 13
else:
raise NotImplementedError
for i in range(0, N1):
if i in [1,4,7,10]:
channel = super_channels[cnt] * (2 ** cnt)
config = {'channel': channel}
result.append(channel)
logging.info(f"Downsample channels {result[-1]}")
cnt += 1
for i in range(3):
for counter, j in enumerate(range(N1 + i * 3, N1 + 3 + i * 3)):
if len(super_channels) == 6:
channel = super_channels[3] * 4
else:
channel = super_channels[i + 3] * 4
config = {'channel': channel}
if counter == 0:
result.append(channel)
logging.info(f"Bottleneck channels {result[-1]}")
cnt = 2
for i in range(N1+9, N1+21):
if i in [22, 25,28]:
cnt -= 1
if len(super_channels) == 6:
channel = super_channels[5 - cnt] * (2 ** cnt)
else:
channel = super_channels[7 - cnt] * (2 ** cnt)
result.append(int(channel))
logging.info(f"Upsample channels {result[-1]}")
return result
def forward(self, input):
return self.model(input)
# Defines the PatchGAN discriminator with the specified arguments.
class NLayerDiscriminator(BaseDiscriminator):
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d,):
super().__init__()
self.n_layers = n_layers
kw = 4
padw = int(np.ceil((kw-1.0)/2))
sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)]]
nf = ndf
for n in range(1, n_layers):
nf_prev = nf
nf = min(nf * 2, 512)
cur_model = []
cur_model += [
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
norm_layer(nf),
nn.LeakyReLU(0.2, True)
]
sequence.append(cur_model)
nf_prev = nf
nf = min(nf * 2, 512)
cur_model = []
cur_model += [
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
norm_layer(nf),
nn.LeakyReLU(0.2, True)
]
sequence.append(cur_model)
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
for n in range(len(sequence)):
setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
def get_all_activations(self, x):
res = [x]
for n in range(self.n_layers + 2):
model = getattr(self, 'model' + str(n))
res.append(model(res[-1]))
return res[1:]
def forward(self, x):
act = self.get_all_activations(x)
return act[-1], act[:-1]
class MultidilatedNLayerDiscriminator(BaseDiscriminator):
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, multidilation_kwargs={}):
super().__init__()
self.n_layers = n_layers
kw = 4
padw = int(np.ceil((kw-1.0)/2))
sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
nn.LeakyReLU(0.2, True)]]
nf = ndf
for n in range(1, n_layers):
nf_prev = nf
nf = min(nf * 2, 512)
cur_model = []
cur_model += [
MultidilatedConv(nf_prev, nf, kernel_size=kw, stride=2, padding=[2, 3], **multidilation_kwargs),
norm_layer(nf),
nn.LeakyReLU(0.2, True)
]
sequence.append(cur_model)
nf_prev = nf
nf = min(nf * 2, 512)
cur_model = []
cur_model += [
nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
norm_layer(nf),
nn.LeakyReLU(0.2, True)
]
sequence.append(cur_model)
sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
for n in range(len(sequence)):
setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
def get_all_activations(self, x):
res = [x]
for n in range(self.n_layers + 2):
model = getattr(self, 'model' + str(n))
res.append(model(res[-1]))
return res[1:]
def forward(self, x):
act = self.get_all_activations(x)
return act[-1], act[:-1]
class NLayerDiscriminatorAsGen(NLayerDiscriminator):
def forward(self, x):
return super().forward(x)[0]
|