InternGPT / third-party /lama /bin /gen_mask_dataset_hydra.py
zyliu's picture
release iChatApp
0f90f73
#!/usr/bin/env python3
import glob
import os
import shutil
import traceback
import hydra
from omegaconf import OmegaConf
import PIL.Image as Image
import numpy as np
from joblib import Parallel, delayed
from saicinpainting.evaluation.masks.mask import SegmentationMask, propose_random_square_crop
from saicinpainting.evaluation.utils import load_yaml, SmallMode
from saicinpainting.training.data.masks import MixedMaskGenerator
class MakeManyMasksWrapper:
def __init__(self, impl, variants_n=2):
self.impl = impl
self.variants_n = variants_n
def get_masks(self, img):
img = np.transpose(np.array(img), (2, 0, 1))
return [self.impl(img)[0] for _ in range(self.variants_n)]
def process_images(src_images, indir, outdir, config):
if config.generator_kind == 'segmentation':
mask_generator = SegmentationMask(**config.mask_generator_kwargs)
elif config.generator_kind == 'random':
mask_generator_kwargs = OmegaConf.to_container(config.mask_generator_kwargs, resolve=True)
variants_n = mask_generator_kwargs.pop('variants_n', 2)
mask_generator = MakeManyMasksWrapper(MixedMaskGenerator(**mask_generator_kwargs),
variants_n=variants_n)
else:
raise ValueError(f'Unexpected generator kind: {config.generator_kind}')
max_tamper_area = config.get('max_tamper_area', 1)
for infile in src_images:
try:
file_relpath = infile[len(indir):]
img_outpath = os.path.join(outdir, file_relpath)
os.makedirs(os.path.dirname(img_outpath), exist_ok=True)
image = Image.open(infile).convert('RGB')
# scale input image to output resolution and filter smaller images
if min(image.size) < config.cropping.out_min_size:
handle_small_mode = SmallMode(config.cropping.handle_small_mode)
if handle_small_mode == SmallMode.DROP:
continue
elif handle_small_mode == SmallMode.UPSCALE:
factor = config.cropping.out_min_size / min(image.size)
out_size = (np.array(image.size) * factor).round().astype('uint32')
image = image.resize(out_size, resample=Image.BICUBIC)
else:
factor = config.cropping.out_min_size / min(image.size)
out_size = (np.array(image.size) * factor).round().astype('uint32')
image = image.resize(out_size, resample=Image.BICUBIC)
# generate and select masks
src_masks = mask_generator.get_masks(image)
filtered_image_mask_pairs = []
for cur_mask in src_masks:
if config.cropping.out_square_crop:
(crop_left,
crop_top,
crop_right,
crop_bottom) = propose_random_square_crop(cur_mask,
min_overlap=config.cropping.crop_min_overlap)
cur_mask = cur_mask[crop_top:crop_bottom, crop_left:crop_right]
cur_image = image.copy().crop((crop_left, crop_top, crop_right, crop_bottom))
else:
cur_image = image
if len(np.unique(cur_mask)) == 0 or cur_mask.mean() > max_tamper_area:
continue
filtered_image_mask_pairs.append((cur_image, cur_mask))
mask_indices = np.random.choice(len(filtered_image_mask_pairs),
size=min(len(filtered_image_mask_pairs), config.max_masks_per_image),
replace=False)
# crop masks; save masks together with input image
mask_basename = os.path.join(outdir, os.path.splitext(file_relpath)[0])
for i, idx in enumerate(mask_indices):
cur_image, cur_mask = filtered_image_mask_pairs[idx]
cur_basename = mask_basename + f'_crop{i:03d}'
Image.fromarray(np.clip(cur_mask * 255, 0, 255).astype('uint8'),
mode='L').save(cur_basename + f'_mask{i:03d}.png')
cur_image.save(cur_basename + '.png')
except KeyboardInterrupt:
return
except Exception as ex:
print(f'Could not make masks for {infile} due to {ex}:\n{traceback.format_exc()}')
@hydra.main(config_path='../configs/data_gen/whydra', config_name='random_medium_256.yaml')
def main(config: OmegaConf):
if not config.indir.endswith('/'):
config.indir += '/'
os.makedirs(config.outdir, exist_ok=True)
in_files = list(glob.glob(os.path.join(config.indir, '**', f'*.{config.location.extension}'),
recursive=True))
if config.n_jobs == 0:
process_images(in_files, config.indir, config.outdir, config)
else:
in_files_n = len(in_files)
chunk_size = in_files_n // config.n_jobs + (1 if in_files_n % config.n_jobs > 0 else 0)
Parallel(n_jobs=config.n_jobs)(
delayed(process_images)(in_files[start:start+chunk_size], config.indir, config.outdir, config)
for start in range(0, len(in_files), chunk_size)
)
if __name__ == '__main__':
main()