import os import cv2 import numpy as np from saicinpainting.training.visualizers.base import BaseVisualizer, visualize_mask_and_images_batch from saicinpainting.utils import check_and_warn_input_range class DirectoryVisualizer(BaseVisualizer): DEFAULT_KEY_ORDER = 'image predicted_image inpainted'.split(' ') def __init__(self, outdir, key_order=DEFAULT_KEY_ORDER, max_items_in_batch=10, last_without_mask=True, rescale_keys=None): self.outdir = outdir os.makedirs(self.outdir, exist_ok=True) self.key_order = key_order self.max_items_in_batch = max_items_in_batch self.last_without_mask = last_without_mask self.rescale_keys = rescale_keys def __call__(self, epoch_i, batch_i, batch, suffix='', rank=None): check_and_warn_input_range(batch['image'], 0, 1, 'DirectoryVisualizer target image') vis_img = visualize_mask_and_images_batch(batch, self.key_order, max_items=self.max_items_in_batch, last_without_mask=self.last_without_mask, rescale_keys=self.rescale_keys) vis_img = np.clip(vis_img * 255, 0, 255).astype('uint8') curoutdir = os.path.join(self.outdir, f'epoch{epoch_i:04d}{suffix}') os.makedirs(curoutdir, exist_ok=True) rank_suffix = f'_r{rank}' if rank is not None else '' out_fname = os.path.join(curoutdir, f'batch{batch_i:07d}{rank_suffix}.jpg') vis_img = cv2.cvtColor(vis_img, cv2.COLOR_RGB2BGR) cv2.imwrite(out_fname, vis_img)