File size: 14,088 Bytes
e82dda8 273867b 88fd33d fc365d2 88fd33d e82dda8 88fd33d e82dda8 fc365d2 e82dda8 d9187eb fc365d2 d9187eb fc365d2 a1406a7 fc365d2 a1406a7 fc365d2 a1406a7 fc365d2 a1406a7 114611c acea2e9 114611c a1406a7 114611c a1406a7 fc365d2 a1406a7 3d59359 88fd33d 3a65962 88fd33d e82dda8 88fd33d 7f83c31 f7aa3ca 7f83c31 88fd33d a7e7106 88fd33d a7e7106 e82dda8 7f83c31 a7e7106 7f83c31 e82dda8 88fd33d 273867b 8c3498d 273867b e82dda8 273867b e82dda8 88fd33d e82dda8 88fd33d e82dda8 88fd33d e82dda8 88fd33d fc365d2 88fd33d fc365d2 88fd33d 9f7a953 fc365d2 88fd33d fc365d2 88fd33d d9187eb 88fd33d fc365d2 88fd33d fc365d2 88fd33d fc365d2 88fd33d 114611c 88fd33d 9dd610c a1406a7 88fd33d d9187eb 88fd33d 9dd610c d9187eb e82dda8 54ad213 a1406a7 a7e7106 acea2e9 3a65962 acea2e9 a7e7106 d9187eb acea2e9 fc365d2 a7e7106 88fd33d a7e7106 114611c a7e7106 9f7a953 a7e7106 88fd33d a7e7106 114611c cc3f6fe a7e7106 9f7a953 1a07b97 67e191e 661c7d4 67e191e fc365d2 661c7d4 67e191e fc365d2 661c7d4 67e191e fc365d2 661c7d4 67e191e fc365d2 a7e7106 fc365d2 a7e7106 fc365d2 a7e7106 fc365d2 831957f fc365d2 831957f fc365d2 831957f a7e7106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
from datasets import load_dataset
from collections import Counter, defaultdict
from random import sample, shuffle
from collections import Counter
import datasets
from pandas import DataFrame
from huggingface_hub import list_datasets
import os
import gradio as gr
import secrets
parti_prompt_results = []
ORG = "diffusers-parti-prompts"
SUBMISSIONS = {
"kand2": load_dataset(os.path.join(ORG, "kandinsky-2-2"))["train"],
"sdxl": load_dataset(os.path.join(ORG, "sdxl-1.0-refiner"))["train"],
"wuerst": load_dataset(os.path.join(ORG, "wuerstchen"))["train"],
"karlo": load_dataset(os.path.join(ORG, "karlo-v1"))["train"],
}
LINKS = {
"kand2": "https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder",
"sdxl": "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0",
"wuerst": "https://huggingface.co/warp-ai/wuerstchen",
"karlo": "https://huggingface.co/kakaobrain/karlo-v1-alpha",
}
KANDINSKY = """
"## The creative one π¨!
![img](https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/5dfcb1aada6d0311fd3d5448/rETvCyoUD5Mr9wm6OxUhe.png?w=200&h=200&f=face)
\n You mostly resonate with **Kandinsky 2.2** released by AI Forever.
\n Kandinsky 2.2 has a similar architecture to DALLE-2 and works extremely well for artistic, colorful generations.
\n Check out your soulmate [here](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder).
"""
SDXL_RESULT = """
## The powerful one β‘!
![img](https://huggingface.co/datasets/OpenGenAI/logos/resolve/main/7vmYr2XwVcPtkLzac_jxQ.png)
\n You mostly resonate with **Stable Diffusion XL** released by Stability AI.
\n Stable Diffusion XL consists of a two diffusion models that are chained together, a base model and a refiner model. Together, the system contains roughly 5 billion parameters.
\n It's the latest open-source release of Stable Diffusion and allows to render stunning images of much larger sizes than Stable Diffusion v1.
Try it out [here](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0).
"""
WUERSTCHEN = """
## The innovative one βοΈ !
![img](https://www.gravatar.com/avatar/3219846609129e84790fb83793998d61?d=retro&size=100)
\n You mostly resonate with **Wuerstchen** released by the WARP team.
\n Wuerstchen is a three stage diffusion model that proposed a very novel, innovative model architecture.
\n Wuerstchen is able to generate very large images (up to 1024x2048) in just a few seconds.
\n The model has an amazing image quality vs. speed trade-off.
\n Check out your new best friend [here](https://huggingface.co/warp-ai/wuerstchen).
"""
KARLO = """
## The precise one π―!
![img](https://huggingface.co/datasets/OpenGenAI/logos/resolve/main/1670220967262-615ed619c807b26d117a49bd.png)
\n You mostly resonate with **Karlo** released by KakaoBrain.
\n Karlo is based on the same architecture as DALLE-2 and has been trained on the [well curated COYO dataset](https://huggingface.co/datasets/kakaobrain/coyo-700m).
\n Play around with it [here]("https://huggingface.co/kakaobrain/karlo-v1-alpha").
"""
RESULT = {
"kand2": KANDINSKY,
"wuerst": WUERSTCHEN,
"sdxl": SDXL_RESULT,
"karlo": KARLO,
}
NUM_QUESTIONS = 10
MODEL_KEYS = "-".join(SUBMISSIONS.keys())
SUBMISSION_ORG = f"results-{MODEL_KEYS}"
PROMPT_FORMAT = " Select the image that best matches the prompt and click on 'Submit'. Remember that if more images match the prompt equally well, select them all. If no image matches the prompt, no image shall be selected."
submission_names = list(SUBMISSIONS.keys())
num_images = len(SUBMISSIONS[submission_names[0]])
def load_submissions():
all_datasets = list_datasets(author=SUBMISSION_ORG)
relevant_ids = [d.id for d in all_datasets]
submitted_ids = []
for _id in relevant_ids:
ds = load_dataset(_id)["train"]
submitted_ids += ds["id"]
submitted_ids = Counter(submitted_ids)
return submitted_ids
SUBMITTED_IDS = load_submissions()
def generate_random_hash(length=8):
"""
Generates a random hash of specified length.
Args:
length (int): The length of the hash to generate.
Returns:
str: A random hash of specified length.
"""
if length % 2 != 0:
raise ValueError("Length should be an even number.")
num_bytes = length // 2
random_bytes = secrets.token_bytes(num_bytes)
random_hash = secrets.token_hex(num_bytes)
return random_hash
def refresh(row_number, dataframe):
if row_number == NUM_QUESTIONS:
submitted_ids = load_submissions()
return start(submitted_ids)
else:
return dataframe
def start():
ids = {id: 0 for id in range(num_images)}
ids = {**ids, **SUBMITTED_IDS}
# sort by count
ids = sorted(ids.items(), key=lambda x: x[1])
freq_ids = defaultdict(list)
for k, v in ids:
freq_ids[v].append(k)
# shuffle in-between categories
for k, v_list in freq_ids.items():
shuffle(v_list)
freq_ids[k] = v_list
shuffled_ids = sum(list(freq_ids.values()), [])
# get lowest count ids
id_candidates = shuffled_ids[: (10 * NUM_QUESTIONS)]
# get random `NUM_QUESTIONS` ids to check
image_ids = sample(id_candidates, k=NUM_QUESTIONS)
images = {}
for i in range(NUM_QUESTIONS):
order = list(range(len(SUBMISSIONS)))
shuffle(order)
id = image_ids[i]
row = SUBMISSIONS[submission_names[0]][id]
images[i] = {
"prompt": row["Prompt"],
"result": "",
"id": id,
"Challenge": row["Challenge"],
"Category": row["Category"],
"Note": row["Note"],
}
for n, m in enumerate(order):
images[i][f"choice_{n}"] = m
images_frame = DataFrame.from_dict(images, orient="index")
return images_frame
def process(dataframe, row_number=0):
if row_number == NUM_QUESTIONS:
nones = len(RESULT) * [None]
falses = len(RESULT) * [False]
return *nones, *falses, "", ""
image_id = dataframe.iloc[row_number]["id"]
choices = [
submission_names[dataframe.iloc[row_number][f"choice_{i}"]]
for i in range(len(SUBMISSIONS))
]
images = [SUBMISSIONS[c][int(image_id)]["images"] for c in choices]
prompt = SUBMISSIONS[choices[0]][int(image_id)]["Prompt"]
prompt = f'# "{prompt}"'
counter = f"***{row_number + 1}/{NUM_QUESTIONS} {PROMPT_FORMAT}***"
image_buttons = len(images) * [False]
return *images, *image_buttons, prompt, counter
def write_result(user_choice, row_number, dataframe):
if row_number == NUM_QUESTIONS:
return row_number, dataframe
user_choices = []
for i, b in enumerate(str(user_choice)):
if bool(int(b)):
user_choices.append(i)
chosen_models = []
for user_choice in user_choices:
chosen_models.append(submission_names[dataframe.iloc[row_number][f"choice_{user_choice}"]])
print(chosen_models)
dataframe.loc[row_number, "result"] = ",".join(chosen_models)
return row_number + 1, dataframe
def get_index(evt: gr.SelectData) -> int:
return evt.index
def change_view(row_number, dataframe):
if row_number == NUM_QUESTIONS:
results = sum([x.split(",") for x in dataframe["result"].values], [])
results = [r for r in results if len(r) > 0]
favorite_model = Counter(results).most_common(1)[0][0]
dataset = datasets.Dataset.from_pandas(dataframe)
dataset = dataset.remove_columns(set(dataset.column_names) - set(["id", "result"]))
hash = generate_random_hash()
repo_id = os.path.join(SUBMISSION_ORG, hash)
dataset.push_to_hub(repo_id, token=os.getenv("HF_TOKEN"))
return {
intro_view: gr.update(visible=False),
result_view: gr.update(visible=True),
gallery_view: gr.update(visible=False),
start_view: gr.update(visible=True),
result: RESULT[favorite_model],
}
else:
return {
intro_view: gr.update(visible=False),
result_view: gr.update(visible=False),
gallery_view: gr.update(visible=True),
start_view: gr.update(visible=False),
result: "",
}
TITLE = "# What AI model is best for you? π©ββοΈ"
DESCRIPTION = """
***How it works*** π \n\n
- Upon clicking start, you are shown image descriptions alongside four AI generated images.
\n- Select the image that bets matches the prompt. If multiple images match the prompt equally well, select all images. If no image matches the prompt, leave all images *unchecked* if no image matches the prompt.
\n- Answer **10** questions to find out what AI generator most resonates with you.
\n- Your submissions contribute to [**Open Parti Prompts Leaderboard**](https://huggingface.co/spaces/OpenGenAI/parti-prompts-leaderboard) β€οΈ.
\n\n
"""
NOTE = """\n\n\n\n
The prompts you are shown originate from the [Parti Prompts](https://huggingface.co/datasets/nateraw/parti-prompts) dataset.
Parti Prompts is designed to test text-to-image AI models on 1600+ prompts of varying difficulty and categories.
The images you are shown have been pre-generated with 4 state-of-the-art open-sourced text-to-image models.
You answers will be used to contribute to the official [**Open Parti Prompts Leaderboard**](https://huggingface.co/spaces/OpenGenAI/parti-prompts-leaderboard).
Every couple months, the generated images will be updated with possibly improved models. The current models and code that was used to generate the images can be verified here:\n
- [kandinsky-2-2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder) \n
- [wuerstchen](https://huggingface.co/warp-ai/wuerstchen) \n
- [sdxl-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) \n
- [karlo](https://huggingface.co/datasets/diffusers-parti-prompts/karlo-v1) \n
"""
GALLERY_COLUMN_NUM = len(SUBMISSIONS)
with gr.Blocks() as demo:
gr.Markdown(TITLE)
with gr.Column(visible=True) as intro_view:
gr.Markdown(DESCRIPTION)
headers = ["prompt", "result", "id", "Challenge", "Category", "Note"] + [
f"choice_{i}" for i in range(len(SUBMISSIONS))
]
datatype = ["str", "str", "number", "str", "str", "str"] + len(SUBMISSIONS) * [
"number"
]
with gr.Column(visible=False):
row_number = gr.Number(
label="Current row selection index",
value=0,
precision=0,
interactive=False,
)
# Create Data Frame
with gr.Column(visible=False) as result_view:
result = gr.Markdown("")
dataframe = gr.Dataframe(
headers=headers,
datatype=datatype,
row_count=NUM_QUESTIONS,
col_count=(6 + len(SUBMISSIONS), "fixed"),
interactive=False,
)
gr.Markdown("Click on start to play again!")
with gr.Column(visible=True) as start_view:
start_button = gr.Button("Start").style(full_width=True)
gr.Markdown(NOTE)
with gr.Column(visible=False):
selected_image = gr.Number(label="Selected index", value=-1, precision=0)
with gr.Column(visible=False) as gallery_view:
with gr.Row():
counter = gr.Markdown(f"***1/{NUM_QUESTIONS} {PROMPT_FORMAT}***")
with gr.Row():
prompt = gr.Markdown("")
with gr.Blocks():
with gr.Row():
with gr.Column(min_width=200) as c1:
image_1 = gr.Image(interactive=False)
image_1_button = gr.Checkbox(False, label="Image 1").style(full_width=True)
with gr.Column(min_width=200) as c2:
image_2 = gr.Image(interactive=False)
image_2_button = gr.Checkbox(False, label="Image 2").style(full_width=True)
with gr.Column(min_width=200) as c3:
image_3 = gr.Image(interactive=False)
image_3_button = gr.Checkbox(False, label="Image 3").style(full_width=True)
with gr.Column(min_width=200) as c4:
image_4 = gr.Image(interactive=False)
image_4_button = gr.Checkbox(False, label="Image 4").style(full_width=True)
with gr.Row():
submit_button = gr.Button("Submit").style(full_width=True)
start_button.click(
fn=start,
inputs=[],
outputs=dataframe,
show_progress=True
).then(
fn=lambda x: 0 if x == NUM_QUESTIONS else x,
inputs=[row_number],
outputs=[row_number],
).then(
fn=change_view,
inputs=[row_number, dataframe],
outputs=[intro_view, result_view, gallery_view, start_view, result],
).then(
fn=process,
inputs=[dataframe],
outputs=[image_1, image_2, image_3, image_4, image_1_button, image_2_button, image_3_button, image_4_button, prompt, counter]
)
def integerize(x1, x2, x3, x4):
number = f"{int(x1)}{int(x2)}{int(x3)}{int(x4)}"
return int(number)
submit_button.click(
fn=integerize,
inputs=[image_1_button, image_2_button, image_3_button, image_4_button],
outputs=[selected_image],
).then(
fn=write_result,
inputs=[selected_image, row_number, dataframe],
outputs=[row_number, dataframe],
).then(
fn=change_view,
inputs=[row_number, dataframe],
outputs=[intro_view, result_view, gallery_view, start_view, result]
).then(
fn=process,
inputs=[dataframe, row_number],
outputs=[image_1, image_2, image_3, image_4, image_1_button, image_2_button, image_3_button, image_4_button, prompt, counter],
).then(
fn=lambda x: 0 if x == NUM_QUESTIONS else x,
inputs=[row_number],
outputs=[row_number],
).then(
fn=refresh,
inputs=[row_number, dataframe],
outputs=[dataframe],
)
demo.launch()
|