Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,647 Bytes
575f48c b0ec653 575f48c b0ec653 575f48c ac16232 575f48c 0ef267d 16d4e9a b502a3b 575f48c 925e91c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import torch
import random
import numpy as np
import gradio as gr
import librosa
import spaces
from accelerate import Accelerator
from transformers import T5Tokenizer, T5EncoderModel
from diffusers import DDIMScheduler
from src.models.conditioners import MaskDiT
from src.models.controlnet import DiTControlNet
from src.models.conditions import Conditioner
from src.modules.autoencoder_wrapper import Autoencoder
from src.inference_controlnet import inference
from src.utils import load_yaml_with_includes
# Load model and configs
def load_models(config_name, ckpt_path, controlnet_path, vae_path, device):
params = load_yaml_with_includes(config_name)
# Load codec model
autoencoder = Autoencoder(ckpt_path=vae_path,
model_type=params['autoencoder']['name'],
quantization_first=params['autoencoder']['q_first']).to(device)
autoencoder.eval()
# Load text encoder
tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model'])
text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device)
text_encoder.eval()
# Load main U-Net model
unet = MaskDiT(**params['model']).to(device)
unet.load_state_dict(torch.load(ckpt_path, map_location='cpu')['model'])
unet.eval()
controlnet_config = params['model'].copy()
controlnet_config.update(params['controlnet'])
controlnet = DiTControlNet(**controlnet_config).to(device)
controlnet.eval()
controlnet.load_state_dict(torch.load(controlnet_path, map_location='cpu')['model'])
conditioner = Conditioner(**params['conditioner']).to(device)
accelerator = Accelerator(mixed_precision="fp16")
unet, controlnet = accelerator.prepare(unet, controlnet)
# Load noise scheduler
noise_scheduler = DDIMScheduler(**params['diff'])
latents = torch.randn((1, 128, 128), device=device)
noise = torch.randn_like(latents)
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device)
_ = noise_scheduler.add_noise(latents, noise, timesteps)
return autoencoder, unet, controlnet, conditioner, tokenizer, text_encoder, noise_scheduler, params
MAX_SEED = np.iinfo(np.int32).max
# Model and config paths
config_name = 'ckpts/controlnet/energy_l.yml'
ckpt_path = 'ckpts/s3/ezaudio_s3_l.pt'
controlnet_path = 'ckpts/controlnet/s3_l_energy.pt'
vae_path = 'ckpts/vae/1m.pt'
# save_path = 'output/'
# os.makedirs(save_path, exist_ok=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
(autoencoder, unet, controlnet, conditioner,
tokenizer, text_encoder, noise_scheduler, params) = load_models(config_name, ckpt_path, controlnet_path, vae_path, device)
@spaces.GPU
def generate_audio(text,
audio_path, surpass_noise,
guidance_scale, guidance_rescale,
ddim_steps, eta,
conditioning_scale,
random_seed, randomize_seed):
sr = params['autoencoder']['sr']
gt, _ = librosa.load(audio_path, sr=sr)
gt = gt / (np.max(np.abs(gt)) + 1e-9) # Normalize audio
if surpass_noise > 0:
mask = np.abs(gt) <= surpass_noise
gt[mask] = 0
original_length = len(gt)
# Ensure the audio is of the correct length by padding or trimming
duration_seconds = min(len(gt) / sr, 10)
quantized_duration = np.ceil(duration_seconds * 2) / 2 # This rounds to the nearest 0.5 seconds
num_samples = int(quantized_duration * sr)
audio_frames = round(num_samples / sr * params['autoencoder']['latent_sr'])
if len(gt) < num_samples:
padding = num_samples - len(gt)
gt = np.pad(gt, (0, padding), 'constant')
else:
gt = gt[:num_samples]
gt_audio = torch.tensor(gt).unsqueeze(0).unsqueeze(1).to(device)
gt = autoencoder(audio=gt_audio)
condition = conditioner(gt_audio.squeeze(1), gt.shape)
# Handle random seed
if randomize_seed:
random_seed = random.randint(0, MAX_SEED)
# Perform inference
pred = inference(autoencoder, unet, controlnet,
None, None, condition,
tokenizer, text_encoder,
params, noise_scheduler,
text, neg_text=None,
audio_frames=audio_frames,
guidance_scale=guidance_scale, guidance_rescale=guidance_rescale,
ddim_steps=ddim_steps, eta=eta, random_seed=random_seed,
conditioning_scale=conditioning_scale, device=device)
pred = pred.cpu().numpy().squeeze(0).squeeze(0)[:original_length]
return sr, pred
# CSS styling (optional)
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
"""
# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# EzAudio: High-quality Text-to-Audio Generator
Generate and edit audio from text using a diffusion transformer. Adjust advanced settings for more control.
Learn more about 😈**EzAudio** on the [EzAudio Homepage](https://haidog-yaqub.github.io/EzAudio-Page/).
Explore **Text-to-Audio**, **Editing**, and **Inpainting** features on the [EzAudio Demo](https://huggingface.co/spaces/OpenSound/EzAudio).
""")
with gr.Row():
# Input for the text prompt (used for generating new audio)
text_input = gr.Textbox(
label="Text Prompt",
show_label=True,
max_lines=2,
placeholder="Describe the sound you want to generate",
value="A dog barking in the background",
scale=4
)
# Button to generate the audio
generate_button = gr.Button("Generate")
# Audio input to use as base
audio_file_input = gr.Audio(label="Upload Reference Audio (less than 10s)", value='reference.mp3', type="filepath")
# Output Component for the generated audio
generated_audio_output = gr.Audio(label="Generated Audio", type="numpy")
with gr.Accordion("Advanced Settings", open=False):
# Length of the generated audio
surpass_noise = gr.Slider(minimum=0, maximum=0.2, step=0.01, value=0.05, label="Noise Threshold (Amplitude)")
guidance_scale = gr.Slider(minimum=1.0, maximum=10.0, step=0.5, value=5.0, label="Guidance Scale")
guidance_rescale = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.5, label="Guidance Rescale")
ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta")
conditioning_scale = gr.Slider(minimum=0.0, maximum=2.0, step=0.25, value=1.0, label="Conditioning Scale")
random_seed = gr.Slider(minimum=0, maximum=10000, step=1, value=0, label="Random Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True)
# Link the inputs to the function
generate_button.click(
fn=generate_audio,
inputs=[
text_input, audio_file_input, surpass_noise, guidance_scale, guidance_rescale,
ddim_steps, eta, conditioning_scale, random_seed, randomize_seed
],
outputs=[generated_audio_output]
)
text_input.submit(
fn=generate_audio,
inputs=[
text_input, audio_file_input, surpass_noise, guidance_scale, guidance_rescale,
ddim_steps, eta, conditioning_scale, random_seed, randomize_seed
],
outputs=[generated_audio_output]
)
# Launch the Gradio demo
demo.launch() |