File size: 13,926 Bytes
9d3cb0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import math
import os
import time
from collections import defaultdict
from functools import wraps

import torch
import torch.distributed as dist
from rich import box
from rich.console import Console
from rich.console import Group
from rich.live import Live
from rich.markdown import Markdown
from rich.padding import Padding
from rich.panel import Panel
from rich.progress import BarColumn
from rich.progress import Progress
from rich.progress import SpinnerColumn
from rich.progress import TimeElapsedColumn
from rich.progress import TimeRemainingColumn
from rich.rule import Rule
from rich.table import Table
from torch.utils.tensorboard import SummaryWriter


# This is here so that the history can be pickled.
def default_list():
    return []


class Mean:
    """Keeps track of the running mean, along with the latest
    value.
    """

    def __init__(self):
        self.reset()

    def __call__(self):
        mean = self.total / max(self.count, 1)
        return mean

    def reset(self):
        self.count = 0
        self.total = 0

    def update(self, val):
        if math.isfinite(val):
            self.count += 1
            self.total += val


def when(condition):
    """Runs a function only when the condition is met. The condition is
    a function that is run.

    Parameters
    ----------
    condition : Callable
        Function to run to check whether or not to run the decorated
        function.

    Example
    -------
    Checkpoint only runs every 100 iterations, and only if the
    local rank is 0.

    >>> i = 0
    >>> rank = 0
    >>>
    >>> @when(lambda: i % 100 == 0 and rank == 0)
    >>> def checkpoint():
    >>>     print("Saving to /runs/exp1")
    >>>
    >>> for i in range(1000):
    >>>     checkpoint()

    """

    def decorator(fn):
        @wraps(fn)
        def decorated(*args, **kwargs):
            if condition():
                return fn(*args, **kwargs)

        return decorated

    return decorator


def timer(prefix: str = "time"):
    """Adds execution time to the output dictionary of the decorated
    function. The function decorated by this must output a dictionary.
    The key added will follow the form "[prefix]/[name_of_function]"

    Parameters
    ----------
    prefix : str, optional
        The key added will follow the form "[prefix]/[name_of_function]",
        by default "time".
    """

    def decorator(fn):
        @wraps(fn)
        def decorated(*args, **kwargs):
            s = time.perf_counter()
            output = fn(*args, **kwargs)
            assert isinstance(output, dict)
            e = time.perf_counter()
            output[f"{prefix}/{fn.__name__}"] = e - s
            return output

        return decorated

    return decorator


class Tracker:
    """
    A tracker class that helps to monitor the progress of training and logging the metrics.

    Attributes
    ----------
    metrics : dict
        A dictionary containing the metrics for each label.
    history : dict
        A dictionary containing the history of metrics for each label.
    writer : SummaryWriter
        A SummaryWriter object for logging the metrics.
    rank : int
        The rank of the current process.
    step : int
        The current step of the training.
    tasks : dict
        A dictionary containing the progress bars and tables for each label.
    pbar : Progress
        A progress bar object for displaying the progress.
    consoles : list
        A list of console objects for logging.
    live : Live
        A Live object for updating the display live.

    Methods
    -------
    print(msg: str)
        Prints the given message to all consoles.
    update(label: str, fn_name: str)
        Updates the progress bar and table for the given label.
    done(label: str, title: str)
        Resets the progress bar and table for the given label and prints the final result.
    track(label: str, length: int, completed: int = 0, op: dist.ReduceOp = dist.ReduceOp.AVG, ddp_active: bool = "LOCAL_RANK" in os.environ)
        A decorator for tracking the progress and metrics of a function.
    log(label: str, value_type: str = "value", history: bool = True)
        A decorator for logging the metrics of a function.
    is_best(label: str, key: str) -> bool
        Checks if the latest value of the given key in the label is the best so far.
    state_dict() -> dict
        Returns a dictionary containing the state of the tracker.
    load_state_dict(state_dict: dict) -> Tracker
        Loads the state of the tracker from the given state dictionary.
    """

    def __init__(
        self,
        writer: SummaryWriter = None,
        log_file: str = None,
        rank: int = 0,
        console_width: int = 100,
        step: int = 0,
    ):
        """
        Initializes the Tracker object.

        Parameters
        ----------
        writer : SummaryWriter, optional
            A SummaryWriter object for logging the metrics, by default None.
        log_file : str, optional
            The path to the log file, by default None.
        rank : int, optional
            The rank of the current process, by default 0.
        console_width : int, optional
            The width of the console, by default 100.
        step : int, optional
            The current step of the training, by default 0.
        """
        self.metrics = {}
        self.history = {}
        self.writer = writer
        self.rank = rank
        self.step = step

        # Create progress bars etc.
        self.tasks = {}
        self.pbar = Progress(
            SpinnerColumn(),
            "[progress.description]{task.description}",
            "{task.completed}/{task.total}",
            BarColumn(),
            TimeElapsedColumn(),
            "/",
            TimeRemainingColumn(),
        )
        self.consoles = [Console(width=console_width)]
        self.live = Live(console=self.consoles[0], refresh_per_second=10)
        if log_file is not None:
            self.consoles.append(Console(width=console_width, file=open(log_file, "a")))

    def print(self, msg):
        """
        Prints the given message to all consoles.

        Parameters
        ----------
        msg : str
            The message to be printed.
        """
        if self.rank == 0:
            for c in self.consoles:
                c.log(msg)

    def update(self, label, fn_name):
        """
        Updates the progress bar and table for the given label.

        Parameters
        ----------
        label : str
            The label of the progress bar and table to be updated.
        fn_name : str
            The name of the function associated with the label.
        """
        if self.rank == 0:
            self.pbar.advance(self.tasks[label]["pbar"])

            # Create table
            table = Table(title=label, expand=True, box=box.MINIMAL)
            table.add_column("key", style="cyan")
            table.add_column("value", style="bright_blue")
            table.add_column("mean", style="bright_green")

            keys = self.metrics[label]["value"].keys()
            for k in keys:
                value = self.metrics[label]["value"][k]
                mean = self.metrics[label]["mean"][k]()
                table.add_row(k, f"{value:10.6f}", f"{mean:10.6f}")

            self.tasks[label]["table"] = table
            tables = [t["table"] for t in self.tasks.values()]
            group = Group(*tables, self.pbar)
            self.live.update(
                Group(
                    Padding("", (0, 0)),
                    Rule(f"[italic]{fn_name}()", style="white"),
                    Padding("", (0, 0)),
                    Panel.fit(
                        group, padding=(0, 5), title="[b]Progress", border_style="blue"
                    ),
                )
            )

    def done(self, label: str, title: str):
        """
        Resets the progress bar and table for the given label and prints the final result.

        Parameters
        ----------
        label : str
            The label of the progress bar and table to be reset.
        title : str
            The title to be displayed when printing the final result.
        """
        for label in self.metrics:
            for v in self.metrics[label]["mean"].values():
                v.reset()

        if self.rank == 0:
            self.pbar.reset(self.tasks[label]["pbar"])
            tables = [t["table"] for t in self.tasks.values()]
            group = Group(Markdown(f"# {title}"), *tables, self.pbar)
            self.print(group)

    def track(
        self,
        label: str,
        length: int,
        completed: int = 0,
        op: dist.ReduceOp = dist.ReduceOp.AVG,
        ddp_active: bool = "LOCAL_RANK" in os.environ,
    ):
        """
        A decorator for tracking the progress and metrics of a function.

        Parameters
        ----------
        label : str
            The label to be associated with the progress and metrics.
        length : int
            The total number of iterations to be completed.
        completed : int, optional
            The number of iterations already completed, by default 0.
        op : dist.ReduceOp, optional
            The reduce operation to be used, by default dist.ReduceOp.AVG.
        ddp_active : bool, optional
            Whether the DistributedDataParallel is active, by default "LOCAL_RANK" in os.environ.
        """
        self.tasks[label] = {
            "pbar": self.pbar.add_task(
                f"[white]Iteration ({label})", total=length, completed=completed
            ),
            "table": Table(),
        }
        self.metrics[label] = {
            "value": defaultdict(),
            "mean": defaultdict(lambda: Mean()),
        }

        def decorator(fn):
            @wraps(fn)
            def decorated(*args, **kwargs):
                output = fn(*args, **kwargs)
                if not isinstance(output, dict):
                    self.update(label, fn.__name__)
                    return output
                # Collect across all DDP processes
                scalar_keys = []
                for k, v in output.items():
                    if isinstance(v, (int, float)):
                        v = torch.tensor([v])
                    if not torch.is_tensor(v):
                        continue
                    if ddp_active and v.is_cuda:  # pragma: no cover
                        dist.all_reduce(v, op=op)
                    output[k] = v.detach()
                    if torch.numel(v) == 1:
                        scalar_keys.append(k)
                        output[k] = v.item()

                # Save the outputs to tracker
                for k, v in output.items():
                    if k not in scalar_keys:
                        continue
                    self.metrics[label]["value"][k] = v
                    # Update the running mean
                    self.metrics[label]["mean"][k].update(v)

                self.update(label, fn.__name__)
                return output

            return decorated

        return decorator

    def log(self, label: str, value_type: str = "value", history: bool = True):
        """
        A decorator for logging the metrics of a function.

        Parameters
        ----------
        label : str
            The label to be associated with the logging.
        value_type : str, optional
            The type of value to be logged, by default "value".
        history : bool, optional
            Whether to save the history of the metrics, by default True.
        """
        assert value_type in ["mean", "value"]
        if history:
            if label not in self.history:
                self.history[label] = defaultdict(default_list)

        def decorator(fn):
            @wraps(fn)
            def decorated(*args, **kwargs):
                output = fn(*args, **kwargs)
                if self.rank == 0:
                    nonlocal value_type, label
                    metrics = self.metrics[label][value_type]
                    for k, v in metrics.items():
                        v = v() if isinstance(v, Mean) else v
                        if self.writer is not None:
                            self.writer.add_scalar(f"{k}/{label}", v, self.step)
                        if label in self.history:
                            self.history[label][k].append(v)

                    if label in self.history:
                        self.history[label]["step"].append(self.step)

                return output

            return decorated

        return decorator

    def is_best(self, label, key):
        """
        Checks if the latest value of the given key in the label is the best so far.

        Parameters
        ----------
        label : str
            The label of the metrics to be checked.
        key : str
            The key of the metric to be checked.

        Returns
        -------
        bool
            True if the latest value is the best so far, otherwise False.
        """
        return self.history[label][key][-1] == min(self.history[label][key])

    def state_dict(self):
        """
        Returns a dictionary containing the state of the tracker.

        Returns
        -------
        dict
            A dictionary containing the history and step of the tracker.
        """
        return {"history": self.history, "step": self.step}

    def load_state_dict(self, state_dict):
        """
        Loads the state of the tracker from the given state dictionary.

        Parameters
        ----------
        state_dict : dict
            A dictionary containing the history and step of the tracker.

        Returns
        -------
        Tracker
            The tracker object with the loaded state.
        """
        self.history = state_dict["history"]
        self.step = state_dict["step"]
        return self