Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import functools | |
import hashlib | |
import math | |
import pathlib | |
import tempfile | |
import typing | |
import warnings | |
from collections import namedtuple | |
from pathlib import Path | |
import julius | |
import numpy as np | |
import soundfile | |
import torch | |
from . import util | |
from .display import DisplayMixin | |
from .dsp import DSPMixin | |
from .effects import EffectMixin | |
from .effects import ImpulseResponseMixin | |
from .ffmpeg import FFMPEGMixin | |
from .loudness import LoudnessMixin | |
from .playback import PlayMixin | |
from .whisper import WhisperMixin | |
STFTParams = namedtuple( | |
"STFTParams", | |
["window_length", "hop_length", "window_type", "match_stride", "padding_type"], | |
) | |
""" | |
STFTParams object is a container that holds STFT parameters - window_length, | |
hop_length, and window_type. Not all parameters need to be specified. Ones that | |
are not specified will be inferred by the AudioSignal parameters. | |
Parameters | |
---------- | |
window_length : int, optional | |
Window length of STFT, by default ``0.032 * self.sample_rate``. | |
hop_length : int, optional | |
Hop length of STFT, by default ``window_length // 4``. | |
window_type : str, optional | |
Type of window to use, by default ``sqrt\_hann``. | |
match_stride : bool, optional | |
Whether to match the stride of convolutional layers, by default False | |
padding_type : str, optional | |
Type of padding to use, by default 'reflect' | |
""" | |
STFTParams.__new__.__defaults__ = (None, None, None, None, None) | |
class AudioSignal( | |
EffectMixin, | |
LoudnessMixin, | |
PlayMixin, | |
ImpulseResponseMixin, | |
DSPMixin, | |
DisplayMixin, | |
FFMPEGMixin, | |
WhisperMixin, | |
): | |
"""This is the core object of this library. Audio is always | |
loaded into an AudioSignal, which then enables all the features | |
of this library, including audio augmentations, I/O, playback, | |
and more. | |
The structure of this object is that the base functionality | |
is defined in ``core/audio_signal.py``, while extensions to | |
that functionality are defined in the other ``core/*.py`` | |
files. For example, all the display-based functionality | |
(e.g. plot spectrograms, waveforms, write to tensorboard) | |
are in ``core/display.py``. | |
Parameters | |
---------- | |
audio_path_or_array : typing.Union[torch.Tensor, str, Path, np.ndarray] | |
Object to create AudioSignal from. Can be a tensor, numpy array, | |
or a path to a file. The file is always reshaped to | |
sample_rate : int, optional | |
Sample rate of the audio. If different from underlying file, resampling is | |
performed. If passing in an array or tensor, this must be defined, | |
by default None | |
stft_params : STFTParams, optional | |
Parameters of STFT to use. , by default None | |
offset : float, optional | |
Offset in seconds to read from file, by default 0 | |
duration : float, optional | |
Duration in seconds to read from file, by default None | |
device : str, optional | |
Device to load audio onto, by default None | |
Examples | |
-------- | |
Loading an AudioSignal from an array, at a sample rate of | |
44100. | |
>>> signal = AudioSignal(torch.randn(5*44100), 44100) | |
Note, the signal is reshaped to have a batch size, and one | |
audio channel: | |
>>> print(signal.shape) | |
(1, 1, 44100) | |
You can treat AudioSignals like tensors, and many of the same | |
functions you might use on tensors are defined for AudioSignals | |
as well: | |
>>> signal.to("cuda") | |
>>> signal.cuda() | |
>>> signal.clone() | |
>>> signal.detach() | |
Indexing AudioSignals returns an AudioSignal: | |
>>> signal[..., 3*44100:4*44100] | |
The above signal is 1 second long, and is also an AudioSignal. | |
""" | |
def __init__( | |
self, | |
audio_path_or_array: typing.Union[torch.Tensor, str, Path, np.ndarray], | |
sample_rate: int = None, | |
stft_params: STFTParams = None, | |
offset: float = 0, | |
duration: float = None, | |
device: str = None, | |
): | |
audio_path = None | |
audio_array = None | |
if isinstance(audio_path_or_array, str): | |
audio_path = audio_path_or_array | |
elif isinstance(audio_path_or_array, pathlib.Path): | |
audio_path = audio_path_or_array | |
elif isinstance(audio_path_or_array, np.ndarray): | |
audio_array = audio_path_or_array | |
elif torch.is_tensor(audio_path_or_array): | |
audio_array = audio_path_or_array | |
else: | |
raise ValueError( | |
"audio_path_or_array must be either a Path, " | |
"string, numpy array, or torch Tensor!" | |
) | |
self.path_to_file = None | |
self.audio_data = None | |
self.sources = None # List of AudioSignal objects. | |
self.stft_data = None | |
if audio_path is not None: | |
self.load_from_file( | |
audio_path, offset=offset, duration=duration, device=device | |
) | |
elif audio_array is not None: | |
assert sample_rate is not None, "Must set sample rate!" | |
self.load_from_array(audio_array, sample_rate, device=device) | |
self.window = None | |
self.stft_params = stft_params | |
self.metadata = { | |
"offset": offset, | |
"duration": duration, | |
} | |
def path_to_input_file( | |
self, | |
): | |
""" | |
Path to input file, if it exists. | |
Alias to ``path_to_file`` for backwards compatibility | |
""" | |
return self.path_to_file | |
def excerpt( | |
cls, | |
audio_path: typing.Union[str, Path], | |
offset: float = None, | |
duration: float = None, | |
state: typing.Union[np.random.RandomState, int] = None, | |
**kwargs, | |
): | |
"""Randomly draw an excerpt of ``duration`` seconds from an | |
audio file specified at ``audio_path``, between ``offset`` seconds | |
and end of file. ``state`` can be used to seed the random draw. | |
Parameters | |
---------- | |
audio_path : typing.Union[str, Path] | |
Path to audio file to grab excerpt from. | |
offset : float, optional | |
Lower bound for the start time, in seconds drawn from | |
the file, by default None. | |
duration : float, optional | |
Duration of excerpt, in seconds, by default None | |
state : typing.Union[np.random.RandomState, int], optional | |
RandomState or seed of random state, by default None | |
Returns | |
------- | |
AudioSignal | |
AudioSignal containing excerpt. | |
Examples | |
-------- | |
>>> signal = AudioSignal.excerpt("path/to/audio", duration=5) | |
""" | |
info = util.info(audio_path) | |
total_duration = info.duration | |
state = util.random_state(state) | |
lower_bound = 0 if offset is None else offset | |
upper_bound = max(total_duration - duration, 0) | |
offset = state.uniform(lower_bound, upper_bound) | |
signal = cls(audio_path, offset=offset, duration=duration, **kwargs) | |
signal.metadata["offset"] = offset | |
signal.metadata["duration"] = duration | |
return signal | |
def salient_excerpt( | |
cls, | |
audio_path: typing.Union[str, Path], | |
loudness_cutoff: float = None, | |
num_tries: int = 8, | |
state: typing.Union[np.random.RandomState, int] = None, | |
**kwargs, | |
): | |
"""Similar to AudioSignal.excerpt, except it extracts excerpts only | |
if they are above a specified loudness threshold, which is computed via | |
a fast LUFS routine. | |
Parameters | |
---------- | |
audio_path : typing.Union[str, Path] | |
Path to audio file to grab excerpt from. | |
loudness_cutoff : float, optional | |
Loudness threshold in dB. Typical values are ``-40, -60``, | |
etc, by default None | |
num_tries : int, optional | |
Number of tries to grab an excerpt above the threshold | |
before giving up, by default 8. | |
state : typing.Union[np.random.RandomState, int], optional | |
RandomState or seed of random state, by default None | |
kwargs : dict | |
Keyword arguments to AudioSignal.excerpt | |
Returns | |
------- | |
AudioSignal | |
AudioSignal containing excerpt. | |
.. warning:: | |
if ``num_tries`` is set to None, ``salient_excerpt`` may try forever, which can | |
result in an infinite loop if ``audio_path`` does not have | |
any loud enough excerpts. | |
Examples | |
-------- | |
>>> signal = AudioSignal.salient_excerpt( | |
"path/to/audio", | |
loudness_cutoff=-40, | |
duration=5 | |
) | |
""" | |
state = util.random_state(state) | |
if loudness_cutoff is None: | |
excerpt = cls.excerpt(audio_path, state=state, **kwargs) | |
else: | |
loudness = -np.inf | |
num_try = 0 | |
while loudness <= loudness_cutoff: | |
excerpt = cls.excerpt(audio_path, state=state, **kwargs) | |
loudness = excerpt.loudness() | |
num_try += 1 | |
if num_tries is not None and num_try >= num_tries: | |
break | |
return excerpt | |
def zeros( | |
cls, | |
duration: float, | |
sample_rate: int, | |
num_channels: int = 1, | |
batch_size: int = 1, | |
**kwargs, | |
): | |
"""Helper function create an AudioSignal of all zeros. | |
Parameters | |
---------- | |
duration : float | |
Duration of AudioSignal | |
sample_rate : int | |
Sample rate of AudioSignal | |
num_channels : int, optional | |
Number of channels, by default 1 | |
batch_size : int, optional | |
Batch size, by default 1 | |
Returns | |
------- | |
AudioSignal | |
AudioSignal containing all zeros. | |
Examples | |
-------- | |
Generate 5 seconds of all zeros at a sample rate of 44100. | |
>>> signal = AudioSignal.zeros(5.0, 44100) | |
""" | |
n_samples = int(duration * sample_rate) | |
return cls( | |
torch.zeros(batch_size, num_channels, n_samples), sample_rate, **kwargs | |
) | |
def wave( | |
cls, | |
frequency: float, | |
duration: float, | |
sample_rate: int, | |
num_channels: int = 1, | |
shape: str = "sine", | |
**kwargs, | |
): | |
""" | |
Generate a waveform of a given frequency and shape. | |
Parameters | |
---------- | |
frequency : float | |
Frequency of the waveform | |
duration : float | |
Duration of the waveform | |
sample_rate : int | |
Sample rate of the waveform | |
num_channels : int, optional | |
Number of channels, by default 1 | |
shape : str, optional | |
Shape of the waveform, by default "saw" | |
One of "sawtooth", "square", "sine", "triangle" | |
kwargs : dict | |
Keyword arguments to AudioSignal | |
""" | |
n_samples = int(duration * sample_rate) | |
t = torch.linspace(0, duration, n_samples) | |
if shape == "sawtooth": | |
from scipy.signal import sawtooth | |
wave_data = sawtooth(2 * np.pi * frequency * t, 0.5) | |
elif shape == "square": | |
from scipy.signal import square | |
wave_data = square(2 * np.pi * frequency * t) | |
elif shape == "sine": | |
wave_data = np.sin(2 * np.pi * frequency * t) | |
elif shape == "triangle": | |
from scipy.signal import sawtooth | |
# frequency is doubled by the abs call, so omit the 2 in 2pi | |
wave_data = sawtooth(np.pi * frequency * t, 0.5) | |
wave_data = -np.abs(wave_data) * 2 + 1 | |
else: | |
raise ValueError(f"Invalid shape {shape}") | |
wave_data = torch.tensor(wave_data, dtype=torch.float32) | |
wave_data = wave_data.unsqueeze(0).unsqueeze(0).repeat(1, num_channels, 1) | |
return cls(wave_data, sample_rate, **kwargs) | |
def batch( | |
cls, | |
audio_signals: list, | |
pad_signals: bool = False, | |
truncate_signals: bool = False, | |
resample: bool = False, | |
dim: int = 0, | |
): | |
"""Creates a batched AudioSignal from a list of AudioSignals. | |
Parameters | |
---------- | |
audio_signals : list[AudioSignal] | |
List of AudioSignal objects | |
pad_signals : bool, optional | |
Whether to pad signals to length of the maximum length | |
AudioSignal in the list, by default False | |
truncate_signals : bool, optional | |
Whether to truncate signals to length of shortest length | |
AudioSignal in the list, by default False | |
resample : bool, optional | |
Whether to resample AudioSignal to the sample rate of | |
the first AudioSignal in the list, by default False | |
dim : int, optional | |
Dimension along which to batch the signals. | |
Returns | |
------- | |
AudioSignal | |
Batched AudioSignal. | |
Raises | |
------ | |
RuntimeError | |
If not all AudioSignals are the same sample rate, and | |
``resample=False``, an error is raised. | |
RuntimeError | |
If not all AudioSignals are the same the length, and | |
both ``pad_signals=False`` and ``truncate_signals=False``, | |
an error is raised. | |
Examples | |
-------- | |
Batching a bunch of random signals: | |
>>> signal_list = [AudioSignal(torch.randn(44100), 44100) for _ in range(10)] | |
>>> signal = AudioSignal.batch(signal_list) | |
>>> print(signal.shape) | |
(10, 1, 44100) | |
""" | |
signal_lengths = [x.signal_length for x in audio_signals] | |
sample_rates = [x.sample_rate for x in audio_signals] | |
if len(set(sample_rates)) != 1: | |
if resample: | |
for x in audio_signals: | |
x.resample(sample_rates[0]) | |
else: | |
raise RuntimeError( | |
f"Not all signals had the same sample rate! Got {sample_rates}. " | |
f"All signals must have the same sample rate, or resample must be True. " | |
) | |
if len(set(signal_lengths)) != 1: | |
if pad_signals: | |
max_length = max(signal_lengths) | |
for x in audio_signals: | |
pad_len = max_length - x.signal_length | |
x.zero_pad(0, pad_len) | |
elif truncate_signals: | |
min_length = min(signal_lengths) | |
for x in audio_signals: | |
x.truncate_samples(min_length) | |
else: | |
raise RuntimeError( | |
f"Not all signals had the same length! Got {signal_lengths}. " | |
f"All signals must be the same length, or pad_signals/truncate_signals " | |
f"must be True. " | |
) | |
# Concatenate along the specified dimension (default 0) | |
audio_data = torch.cat([x.audio_data for x in audio_signals], dim=dim) | |
audio_paths = [x.path_to_file for x in audio_signals] | |
batched_signal = cls( | |
audio_data, | |
sample_rate=audio_signals[0].sample_rate, | |
) | |
batched_signal.path_to_file = audio_paths | |
return batched_signal | |
# I/O | |
def load_from_file( | |
self, | |
audio_path: typing.Union[str, Path], | |
offset: float, | |
duration: float, | |
device: str = "cpu", | |
): | |
"""Loads data from file. Used internally when AudioSignal | |
is instantiated with a path to a file. | |
Parameters | |
---------- | |
audio_path : typing.Union[str, Path] | |
Path to file | |
offset : float | |
Offset in seconds | |
duration : float | |
Duration in seconds | |
device : str, optional | |
Device to put AudioSignal on, by default "cpu" | |
Returns | |
------- | |
AudioSignal | |
AudioSignal loaded from file | |
""" | |
import librosa | |
data, sample_rate = librosa.load( | |
audio_path, | |
offset=offset, | |
duration=duration, | |
sr=None, | |
mono=False, | |
) | |
data = util.ensure_tensor(data) | |
if data.shape[-1] == 0: | |
raise RuntimeError( | |
f"Audio file {audio_path} with offset {offset} and duration {duration} is empty!" | |
) | |
if data.ndim < 2: | |
data = data.unsqueeze(0) | |
if data.ndim < 3: | |
data = data.unsqueeze(0) | |
self.audio_data = data | |
self.original_signal_length = self.signal_length | |
self.sample_rate = sample_rate | |
self.path_to_file = audio_path | |
return self.to(device) | |
def load_from_array( | |
self, | |
audio_array: typing.Union[torch.Tensor, np.ndarray], | |
sample_rate: int, | |
device: str = "cpu", | |
): | |
"""Loads data from array, reshaping it to be exactly 3 | |
dimensions. Used internally when AudioSignal is called | |
with a tensor or an array. | |
Parameters | |
---------- | |
audio_array : typing.Union[torch.Tensor, np.ndarray] | |
Array/tensor of audio of samples. | |
sample_rate : int | |
Sample rate of audio | |
device : str, optional | |
Device to move audio onto, by default "cpu" | |
Returns | |
------- | |
AudioSignal | |
AudioSignal loaded from array | |
""" | |
audio_data = util.ensure_tensor(audio_array) | |
if audio_data.dtype == torch.double: | |
audio_data = audio_data.float() | |
if audio_data.ndim < 2: | |
audio_data = audio_data.unsqueeze(0) | |
if audio_data.ndim < 3: | |
audio_data = audio_data.unsqueeze(0) | |
self.audio_data = audio_data | |
self.original_signal_length = self.signal_length | |
self.sample_rate = sample_rate | |
return self.to(device) | |
def write(self, audio_path: typing.Union[str, Path]): | |
"""Writes audio to a file. Only writes the audio | |
that is in the very first item of the batch. To write other items | |
in the batch, index the signal along the batch dimension | |
before writing. After writing, the signal's ``path_to_file`` | |
attribute is updated to the new path. | |
Parameters | |
---------- | |
audio_path : typing.Union[str, Path] | |
Path to write audio to. | |
Returns | |
------- | |
AudioSignal | |
Returns original AudioSignal, so you can use this in a fluent | |
interface. | |
Examples | |
-------- | |
Creating and writing a signal to disk: | |
>>> signal = AudioSignal(torch.randn(10, 1, 44100), 44100) | |
>>> signal.write("/tmp/out.wav") | |
Writing a different element of the batch: | |
>>> signal[5].write("/tmp/out.wav") | |
Using this in a fluent interface: | |
>>> signal.write("/tmp/original.wav").low_pass(4000).write("/tmp/lowpass.wav") | |
""" | |
if self.audio_data[0].abs().max() > 1: | |
warnings.warn("Audio amplitude > 1 clipped when saving") | |
soundfile.write(str(audio_path), self.audio_data[0].numpy().T, self.sample_rate) | |
self.path_to_file = audio_path | |
return self | |
def deepcopy(self): | |
"""Copies the signal and all of its attributes. | |
Returns | |
------- | |
AudioSignal | |
Deep copy of the audio signal. | |
""" | |
return copy.deepcopy(self) | |
def copy(self): | |
"""Shallow copy of signal. | |
Returns | |
------- | |
AudioSignal | |
Shallow copy of the audio signal. | |
""" | |
return copy.copy(self) | |
def clone(self): | |
"""Clones all tensors contained in the AudioSignal, | |
and returns a copy of the signal with everything | |
cloned. Useful when using AudioSignal within autograd | |
computation graphs. | |
Relevant attributes are the stft data, the audio data, | |
and the loudness of the file. | |
Returns | |
------- | |
AudioSignal | |
Clone of AudioSignal. | |
""" | |
clone = type(self)( | |
self.audio_data.clone(), | |
self.sample_rate, | |
stft_params=self.stft_params, | |
) | |
if self.stft_data is not None: | |
clone.stft_data = self.stft_data.clone() | |
if self._loudness is not None: | |
clone._loudness = self._loudness.clone() | |
clone.path_to_file = copy.deepcopy(self.path_to_file) | |
clone.metadata = copy.deepcopy(self.metadata) | |
return clone | |
def detach(self): | |
"""Detaches tensors contained in AudioSignal. | |
Relevant attributes are the stft data, the audio data, | |
and the loudness of the file. | |
Returns | |
------- | |
AudioSignal | |
Same signal, but with all tensors detached. | |
""" | |
if self._loudness is not None: | |
self._loudness = self._loudness.detach() | |
if self.stft_data is not None: | |
self.stft_data = self.stft_data.detach() | |
self.audio_data = self.audio_data.detach() | |
return self | |
def hash(self): | |
"""Writes the audio data to a temporary file, and then | |
hashes it using hashlib. Useful for creating a file | |
name based on the audio content. | |
Returns | |
------- | |
str | |
Hash of audio data. | |
Examples | |
-------- | |
Creating a signal, and writing it to a unique file name: | |
>>> signal = AudioSignal(torch.randn(44100), 44100) | |
>>> hash = signal.hash() | |
>>> signal.write(f"{hash}.wav") | |
""" | |
with tempfile.NamedTemporaryFile(suffix=".wav") as f: | |
self.write(f.name) | |
h = hashlib.sha256() | |
b = bytearray(128 * 1024) | |
mv = memoryview(b) | |
with open(f.name, "rb", buffering=0) as f: | |
for n in iter(lambda: f.readinto(mv), 0): | |
h.update(mv[:n]) | |
file_hash = h.hexdigest() | |
return file_hash | |
# Signal operations | |
def to_mono(self): | |
"""Converts audio data to mono audio, by taking the mean | |
along the channels dimension. | |
Returns | |
------- | |
AudioSignal | |
AudioSignal with mean of channels. | |
""" | |
self.audio_data = self.audio_data.mean(1, keepdim=True) | |
return self | |
def resample(self, sample_rate: int): | |
"""Resamples the audio, using sinc interpolation. This works on both | |
cpu and gpu, and is much faster on gpu. | |
Parameters | |
---------- | |
sample_rate : int | |
Sample rate to resample to. | |
Returns | |
------- | |
AudioSignal | |
Resampled AudioSignal | |
""" | |
if sample_rate == self.sample_rate: | |
return self | |
self.audio_data = julius.resample_frac( | |
self.audio_data, self.sample_rate, sample_rate | |
) | |
self.sample_rate = sample_rate | |
return self | |
# Tensor operations | |
def to(self, device: str): | |
"""Moves all tensors contained in signal to the specified device. | |
Parameters | |
---------- | |
device : str | |
Device to move AudioSignal onto. Typical values are | |
"cuda", "cpu", or "cuda:n" to specify the nth gpu. | |
Returns | |
------- | |
AudioSignal | |
AudioSignal with all tensors moved to specified device. | |
""" | |
if self._loudness is not None: | |
self._loudness = self._loudness.to(device) | |
if self.stft_data is not None: | |
self.stft_data = self.stft_data.to(device) | |
if self.audio_data is not None: | |
self.audio_data = self.audio_data.to(device) | |
return self | |
def float(self): | |
"""Calls ``.float()`` on ``self.audio_data``. | |
Returns | |
------- | |
AudioSignal | |
""" | |
self.audio_data = self.audio_data.float() | |
return self | |
def cpu(self): | |
"""Moves AudioSignal to cpu. | |
Returns | |
------- | |
AudioSignal | |
""" | |
return self.to("cpu") | |
def cuda(self): # pragma: no cover | |
"""Moves AudioSignal to cuda. | |
Returns | |
------- | |
AudioSignal | |
""" | |
return self.to("cuda") | |
def numpy(self): | |
"""Detaches ``self.audio_data``, moves to cpu, and converts to numpy. | |
Returns | |
------- | |
np.ndarray | |
Audio data as a numpy array. | |
""" | |
return self.audio_data.detach().cpu().numpy() | |
def zero_pad(self, before: int, after: int): | |
"""Zero pads the audio_data tensor before and after. | |
Parameters | |
---------- | |
before : int | |
How many zeros to prepend to audio. | |
after : int | |
How many zeros to append to audio. | |
Returns | |
------- | |
AudioSignal | |
AudioSignal with padding applied. | |
""" | |
self.audio_data = torch.nn.functional.pad(self.audio_data, (before, after)) | |
return self | |
def zero_pad_to(self, length: int, mode: str = "after"): | |
"""Pad with zeros to a specified length, either before or after | |
the audio data. | |
Parameters | |
---------- | |
length : int | |
Length to pad to | |
mode : str, optional | |
Whether to prepend or append zeros to signal, by default "after" | |
Returns | |
------- | |
AudioSignal | |
AudioSignal with padding applied. | |
""" | |
if mode == "before": | |
self.zero_pad(max(length - self.signal_length, 0), 0) | |
elif mode == "after": | |
self.zero_pad(0, max(length - self.signal_length, 0)) | |
return self | |
def trim(self, before: int, after: int): | |
"""Trims the audio_data tensor before and after. | |
Parameters | |
---------- | |
before : int | |
How many samples to trim from beginning. | |
after : int | |
How many samples to trim from end. | |
Returns | |
------- | |
AudioSignal | |
AudioSignal with trimming applied. | |
""" | |
if after == 0: | |
self.audio_data = self.audio_data[..., before:] | |
else: | |
self.audio_data = self.audio_data[..., before:-after] | |
return self | |
def truncate_samples(self, length_in_samples: int): | |
"""Truncate signal to specified length. | |
Parameters | |
---------- | |
length_in_samples : int | |
Truncate to this many samples. | |
Returns | |
------- | |
AudioSignal | |
AudioSignal with truncation applied. | |
""" | |
self.audio_data = self.audio_data[..., :length_in_samples] | |
return self | |
def device(self): | |
"""Get device that AudioSignal is on. | |
Returns | |
------- | |
torch.device | |
Device that AudioSignal is on. | |
""" | |
if self.audio_data is not None: | |
device = self.audio_data.device | |
elif self.stft_data is not None: | |
device = self.stft_data.device | |
return device | |
# Properties | |
def audio_data(self): | |
"""Returns the audio data tensor in the object. | |
Audio data is always of the shape | |
(batch_size, num_channels, num_samples). If value has less | |
than 3 dims (e.g. is (num_channels, num_samples)), then it will | |
be reshaped to (1, num_channels, num_samples) - a batch size of 1. | |
Parameters | |
---------- | |
data : typing.Union[torch.Tensor, np.ndarray] | |
Audio data to set. | |
Returns | |
------- | |
torch.Tensor | |
Audio samples. | |
""" | |
return self._audio_data | |
def audio_data(self, data: typing.Union[torch.Tensor, np.ndarray]): | |
if data is not None: | |
assert torch.is_tensor(data), "audio_data should be torch.Tensor" | |
assert data.ndim == 3, "audio_data should be 3-dim (B, C, T)" | |
self._audio_data = data | |
# Old loudness value not guaranteed to be right, reset it. | |
self._loudness = None | |
return | |
# alias for audio_data | |
samples = audio_data | |
def stft_data(self): | |
"""Returns the STFT data inside the signal. Shape is | |
(batch, channels, frequencies, time). | |
Returns | |
------- | |
torch.Tensor | |
Complex spectrogram data. | |
""" | |
return self._stft_data | |
def stft_data(self, data: typing.Union[torch.Tensor, np.ndarray]): | |
if data is not None: | |
assert torch.is_tensor(data) and torch.is_complex(data) | |
if self.stft_data is not None and self.stft_data.shape != data.shape: | |
warnings.warn("stft_data changed shape") | |
self._stft_data = data | |
return | |
def batch_size(self): | |
"""Batch size of audio signal. | |
Returns | |
------- | |
int | |
Batch size of signal. | |
""" | |
return self.audio_data.shape[0] | |
def signal_length(self): | |
"""Length of audio signal. | |
Returns | |
------- | |
int | |
Length of signal in samples. | |
""" | |
return self.audio_data.shape[-1] | |
# alias for signal_length | |
length = signal_length | |
def shape(self): | |
"""Shape of audio data. | |
Returns | |
------- | |
tuple | |
Shape of audio data. | |
""" | |
return self.audio_data.shape | |
def signal_duration(self): | |
"""Length of audio signal in seconds. | |
Returns | |
------- | |
float | |
Length of signal in seconds. | |
""" | |
return self.signal_length / self.sample_rate | |
# alias for signal_duration | |
duration = signal_duration | |
def num_channels(self): | |
"""Number of audio channels. | |
Returns | |
------- | |
int | |
Number of audio channels. | |
""" | |
return self.audio_data.shape[1] | |
# STFT | |
def get_window(window_type: str, window_length: int, device: str): | |
"""Wrapper around scipy.signal.get_window so one can also get the | |
popular sqrt-hann window. This function caches for efficiency | |
using functools.lru\_cache. | |
Parameters | |
---------- | |
window_type : str | |
Type of window to get | |
window_length : int | |
Length of the window | |
device : str | |
Device to put window onto. | |
Returns | |
------- | |
torch.Tensor | |
Window returned by scipy.signal.get_window, as a tensor. | |
""" | |
from scipy import signal | |
if window_type == "average": | |
window = np.ones(window_length) / window_length | |
elif window_type == "sqrt_hann": | |
window = np.sqrt(signal.get_window("hann", window_length)) | |
else: | |
window = signal.get_window(window_type, window_length) | |
window = torch.from_numpy(window).to(device).float() | |
return window | |
def stft_params(self): | |
"""Returns STFTParams object, which can be re-used to other | |
AudioSignals. | |
This property can be set as well. If values are not defined in STFTParams, | |
they are inferred automatically from the signal properties. The default is to use | |
32ms windows, with 8ms hop length, and the square root of the hann window. | |
Returns | |
------- | |
STFTParams | |
STFT parameters for the AudioSignal. | |
Examples | |
-------- | |
>>> stft_params = STFTParams(128, 32) | |
>>> signal1 = AudioSignal(torch.randn(44100), 44100, stft_params=stft_params) | |
>>> signal2 = AudioSignal(torch.randn(44100), 44100, stft_params=signal1.stft_params) | |
>>> signal1.stft_params = STFTParams() # Defaults | |
""" | |
return self._stft_params | |
def stft_params(self, value: STFTParams): | |
default_win_len = int(2 ** (np.ceil(np.log2(0.032 * self.sample_rate)))) | |
default_hop_len = default_win_len // 4 | |
default_win_type = "hann" | |
default_match_stride = False | |
default_padding_type = "reflect" | |
default_stft_params = STFTParams( | |
window_length=default_win_len, | |
hop_length=default_hop_len, | |
window_type=default_win_type, | |
match_stride=default_match_stride, | |
padding_type=default_padding_type, | |
)._asdict() | |
value = value._asdict() if value else default_stft_params | |
for key in default_stft_params: | |
if value[key] is None: | |
value[key] = default_stft_params[key] | |
self._stft_params = STFTParams(**value) | |
self.stft_data = None | |
def compute_stft_padding( | |
self, window_length: int, hop_length: int, match_stride: bool | |
): | |
"""Compute how the STFT should be padded, based on match\_stride. | |
Parameters | |
---------- | |
window_length : int | |
Window length of STFT. | |
hop_length : int | |
Hop length of STFT. | |
match_stride : bool | |
Whether or not to match stride, making the STFT have the same alignment as | |
convolutional layers. | |
Returns | |
------- | |
tuple | |
Amount to pad on either side of audio. | |
""" | |
length = self.signal_length | |
if match_stride: | |
assert ( | |
hop_length == window_length // 4 | |
), "For match_stride, hop must equal n_fft // 4" | |
right_pad = math.ceil(length / hop_length) * hop_length - length | |
pad = (window_length - hop_length) // 2 | |
else: | |
right_pad = 0 | |
pad = 0 | |
return right_pad, pad | |
def stft( | |
self, | |
window_length: int = None, | |
hop_length: int = None, | |
window_type: str = None, | |
match_stride: bool = None, | |
padding_type: str = None, | |
): | |
"""Computes the short-time Fourier transform of the audio data, | |
with specified STFT parameters. | |
Parameters | |
---------- | |
window_length : int, optional | |
Window length of STFT, by default ``0.032 * self.sample_rate``. | |
hop_length : int, optional | |
Hop length of STFT, by default ``window_length // 4``. | |
window_type : str, optional | |
Type of window to use, by default ``sqrt\_hann``. | |
match_stride : bool, optional | |
Whether to match the stride of convolutional layers, by default False | |
padding_type : str, optional | |
Type of padding to use, by default 'reflect' | |
Returns | |
------- | |
torch.Tensor | |
STFT of audio data. | |
Examples | |
-------- | |
Compute the STFT of an AudioSignal: | |
>>> signal = AudioSignal(torch.randn(44100), 44100) | |
>>> signal.stft() | |
Vary the window and hop length: | |
>>> stft_params = [STFTParams(128, 32), STFTParams(512, 128)] | |
>>> for stft_param in stft_params: | |
>>> signal.stft_params = stft_params | |
>>> signal.stft() | |
""" | |
window_length = ( | |
self.stft_params.window_length | |
if window_length is None | |
else int(window_length) | |
) | |
hop_length = ( | |
self.stft_params.hop_length if hop_length is None else int(hop_length) | |
) | |
window_type = ( | |
self.stft_params.window_type if window_type is None else window_type | |
) | |
match_stride = ( | |
self.stft_params.match_stride if match_stride is None else match_stride | |
) | |
padding_type = ( | |
self.stft_params.padding_type if padding_type is None else padding_type | |
) | |
window = self.get_window(window_type, window_length, self.audio_data.device) | |
window = window.to(self.audio_data.device) | |
audio_data = self.audio_data | |
right_pad, pad = self.compute_stft_padding( | |
window_length, hop_length, match_stride | |
) | |
audio_data = torch.nn.functional.pad( | |
audio_data, (pad, pad + right_pad), padding_type | |
) | |
stft_data = torch.stft( | |
audio_data.reshape(-1, audio_data.shape[-1]), | |
n_fft=window_length, | |
hop_length=hop_length, | |
window=window, | |
return_complex=True, | |
center=True, | |
) | |
_, nf, nt = stft_data.shape | |
stft_data = stft_data.reshape(self.batch_size, self.num_channels, nf, nt) | |
if match_stride: | |
# Drop first two and last two frames, which are added | |
# because of padding. Now num_frames * hop_length = num_samples. | |
stft_data = stft_data[..., 2:-2] | |
self.stft_data = stft_data | |
return stft_data | |
def istft( | |
self, | |
window_length: int = None, | |
hop_length: int = None, | |
window_type: str = None, | |
match_stride: bool = None, | |
length: int = None, | |
): | |
"""Computes inverse STFT and sets it to audio\_data. | |
Parameters | |
---------- | |
window_length : int, optional | |
Window length of STFT, by default ``0.032 * self.sample_rate``. | |
hop_length : int, optional | |
Hop length of STFT, by default ``window_length // 4``. | |
window_type : str, optional | |
Type of window to use, by default ``sqrt\_hann``. | |
match_stride : bool, optional | |
Whether to match the stride of convolutional layers, by default False | |
length : int, optional | |
Original length of signal, by default None | |
Returns | |
------- | |
AudioSignal | |
AudioSignal with istft applied. | |
Raises | |
------ | |
RuntimeError | |
Raises an error if stft was not called prior to istft on the signal, | |
or if stft_data is not set. | |
""" | |
if self.stft_data is None: | |
raise RuntimeError("Cannot do inverse STFT without self.stft_data!") | |
window_length = ( | |
self.stft_params.window_length | |
if window_length is None | |
else int(window_length) | |
) | |
hop_length = ( | |
self.stft_params.hop_length if hop_length is None else int(hop_length) | |
) | |
window_type = ( | |
self.stft_params.window_type if window_type is None else window_type | |
) | |
match_stride = ( | |
self.stft_params.match_stride if match_stride is None else match_stride | |
) | |
window = self.get_window(window_type, window_length, self.stft_data.device) | |
nb, nch, nf, nt = self.stft_data.shape | |
stft_data = self.stft_data.reshape(nb * nch, nf, nt) | |
right_pad, pad = self.compute_stft_padding( | |
window_length, hop_length, match_stride | |
) | |
if length is None: | |
length = self.original_signal_length | |
length = length + 2 * pad + right_pad | |
if match_stride: | |
# Zero-pad the STFT on either side, putting back the frames that were | |
# dropped in stft(). | |
stft_data = torch.nn.functional.pad(stft_data, (2, 2)) | |
audio_data = torch.istft( | |
stft_data, | |
n_fft=window_length, | |
hop_length=hop_length, | |
window=window, | |
length=length, | |
center=True, | |
) | |
audio_data = audio_data.reshape(nb, nch, -1) | |
if match_stride: | |
audio_data = audio_data[..., pad : -(pad + right_pad)] | |
self.audio_data = audio_data | |
return self | |
def get_mel_filters( | |
sr: int, n_fft: int, n_mels: int, fmin: float = 0.0, fmax: float = None | |
): | |
"""Create a Filterbank matrix to combine FFT bins into Mel-frequency bins. | |
Parameters | |
---------- | |
sr : int | |
Sample rate of audio | |
n_fft : int | |
Number of FFT bins | |
n_mels : int | |
Number of mels | |
fmin : float, optional | |
Lowest frequency, in Hz, by default 0.0 | |
fmax : float, optional | |
Highest frequency, by default None | |
Returns | |
------- | |
np.ndarray [shape=(n_mels, 1 + n_fft/2)] | |
Mel transform matrix | |
""" | |
from librosa.filters import mel as librosa_mel_fn | |
return librosa_mel_fn( | |
sr=sr, | |
n_fft=n_fft, | |
n_mels=n_mels, | |
fmin=fmin, | |
fmax=fmax, | |
) | |
def mel_spectrogram( | |
self, n_mels: int = 80, mel_fmin: float = 0.0, mel_fmax: float = None, **kwargs | |
): | |
"""Computes a Mel spectrogram. | |
Parameters | |
---------- | |
n_mels : int, optional | |
Number of mels, by default 80 | |
mel_fmin : float, optional | |
Lowest frequency, in Hz, by default 0.0 | |
mel_fmax : float, optional | |
Highest frequency, by default None | |
kwargs : dict, optional | |
Keyword arguments to self.stft(). | |
Returns | |
------- | |
torch.Tensor [shape=(batch, channels, mels, time)] | |
Mel spectrogram. | |
""" | |
stft = self.stft(**kwargs) | |
magnitude = torch.abs(stft) | |
nf = magnitude.shape[2] | |
mel_basis = self.get_mel_filters( | |
sr=self.sample_rate, | |
n_fft=2 * (nf - 1), | |
n_mels=n_mels, | |
fmin=mel_fmin, | |
fmax=mel_fmax, | |
) | |
mel_basis = torch.from_numpy(mel_basis).to(self.device) | |
mel_spectrogram = magnitude.transpose(2, -1) @ mel_basis.T | |
mel_spectrogram = mel_spectrogram.transpose(-1, 2) | |
return mel_spectrogram | |
def get_dct(n_mfcc: int, n_mels: int, norm: str = "ortho", device: str = None): | |
"""Create a discrete cosine transform (DCT) transformation matrix with shape (``n_mels``, ``n_mfcc``), | |
it can be normalized depending on norm. For more information about dct: | |
http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II | |
Parameters | |
---------- | |
n_mfcc : int | |
Number of mfccs | |
n_mels : int | |
Number of mels | |
norm : str | |
Use "ortho" to get a orthogonal matrix or None, by default "ortho" | |
device : str, optional | |
Device to load the transformation matrix on, by default None | |
Returns | |
------- | |
torch.Tensor [shape=(n_mels, n_mfcc)] T | |
The dct transformation matrix. | |
""" | |
from torchaudio.functional import create_dct | |
return create_dct(n_mfcc, n_mels, norm).to(device) | |
def mfcc( | |
self, n_mfcc: int = 40, n_mels: int = 80, log_offset: float = 1e-6, **kwargs | |
): | |
"""Computes mel-frequency cepstral coefficients (MFCCs). | |
Parameters | |
---------- | |
n_mfcc : int, optional | |
Number of mels, by default 40 | |
n_mels : int, optional | |
Number of mels, by default 80 | |
log_offset: float, optional | |
Small value to prevent numerical issues when trying to compute log(0), by default 1e-6 | |
kwargs : dict, optional | |
Keyword arguments to self.mel_spectrogram(), note that some of them will be used for self.stft() | |
Returns | |
------- | |
torch.Tensor [shape=(batch, channels, mfccs, time)] | |
MFCCs. | |
""" | |
mel_spectrogram = self.mel_spectrogram(n_mels, **kwargs) | |
mel_spectrogram = torch.log(mel_spectrogram + log_offset) | |
dct_mat = self.get_dct(n_mfcc, n_mels, "ortho", self.device) | |
mfcc = mel_spectrogram.transpose(-1, -2) @ dct_mat | |
mfcc = mfcc.transpose(-1, -2) | |
return mfcc | |
def magnitude(self): | |
"""Computes and returns the absolute value of the STFT, which | |
is the magnitude. This value can also be set to some tensor. | |
When set, ``self.stft_data`` is manipulated so that its magnitude | |
matches what this is set to, and modulated by the phase. | |
Returns | |
------- | |
torch.Tensor | |
Magnitude of STFT. | |
Examples | |
-------- | |
>>> signal = AudioSignal(torch.randn(44100), 44100) | |
>>> magnitude = signal.magnitude # Computes stft if not computed | |
>>> magnitude[magnitude < magnitude.mean()] = 0 | |
>>> signal.magnitude = magnitude | |
>>> signal.istft() | |
""" | |
if self.stft_data is None: | |
self.stft() | |
return torch.abs(self.stft_data) | |
def magnitude(self, value): | |
self.stft_data = value * torch.exp(1j * self.phase) | |
return | |
def log_magnitude( | |
self, ref_value: float = 1.0, amin: float = 1e-5, top_db: float = 80.0 | |
): | |
"""Computes the log-magnitude of the spectrogram. | |
Parameters | |
---------- | |
ref_value : float, optional | |
The magnitude is scaled relative to ``ref``: ``20 * log10(S / ref)``. | |
Zeros in the output correspond to positions where ``S == ref``, | |
by default 1.0 | |
amin : float, optional | |
Minimum threshold for ``S`` and ``ref``, by default 1e-5 | |
top_db : float, optional | |
Threshold the output at ``top_db`` below the peak: | |
``max(10 * log10(S/ref)) - top_db``, by default -80.0 | |
Returns | |
------- | |
torch.Tensor | |
Log-magnitude spectrogram | |
""" | |
magnitude = self.magnitude | |
amin = amin**2 | |
log_spec = 10.0 * torch.log10(magnitude.pow(2).clamp(min=amin)) | |
log_spec -= 10.0 * np.log10(np.maximum(amin, ref_value)) | |
if top_db is not None: | |
log_spec = torch.maximum(log_spec, log_spec.max() - top_db) | |
return log_spec | |
def phase(self): | |
"""Computes and returns the phase of the STFT. | |
This value can also be set to some tensor. | |
When set, ``self.stft_data`` is manipulated so that its phase | |
matches what this is set to, we original magnitudeith th. | |
Returns | |
------- | |
torch.Tensor | |
Phase of STFT. | |
Examples | |
-------- | |
>>> signal = AudioSignal(torch.randn(44100), 44100) | |
>>> phase = signal.phase # Computes stft if not computed | |
>>> phase[phase < phase.mean()] = 0 | |
>>> signal.phase = phase | |
>>> signal.istft() | |
""" | |
if self.stft_data is None: | |
self.stft() | |
return torch.angle(self.stft_data) | |
def phase(self, value): | |
self.stft_data = self.magnitude * torch.exp(1j * value) | |
return | |
# Operator overloading | |
def __add__(self, other): | |
new_signal = self.clone() | |
new_signal.audio_data += util._get_value(other) | |
return new_signal | |
def __iadd__(self, other): | |
self.audio_data += util._get_value(other) | |
return self | |
def __radd__(self, other): | |
return self + other | |
def __sub__(self, other): | |
new_signal = self.clone() | |
new_signal.audio_data -= util._get_value(other) | |
return new_signal | |
def __isub__(self, other): | |
self.audio_data -= util._get_value(other) | |
return self | |
def __mul__(self, other): | |
new_signal = self.clone() | |
new_signal.audio_data *= util._get_value(other) | |
return new_signal | |
def __imul__(self, other): | |
self.audio_data *= util._get_value(other) | |
return self | |
def __rmul__(self, other): | |
return self * other | |
# Representation | |
def _info(self): | |
dur = f"{self.signal_duration:0.3f}" if self.signal_duration else "[unknown]" | |
info = { | |
"duration": f"{dur} seconds", | |
"batch_size": self.batch_size, | |
"path": self.path_to_file if self.path_to_file else "path unknown", | |
"sample_rate": self.sample_rate, | |
"num_channels": self.num_channels if self.num_channels else "[unknown]", | |
"audio_data.shape": self.audio_data.shape, | |
"stft_params": self.stft_params, | |
"device": self.device, | |
} | |
return info | |
def markdown(self): | |
"""Produces a markdown representation of AudioSignal, in a markdown table. | |
Returns | |
------- | |
str | |
Markdown representation of AudioSignal. | |
Examples | |
-------- | |
>>> signal = AudioSignal(torch.randn(44100), 44100) | |
>>> print(signal.markdown()) | |
| Key | Value | |
|---|--- | |
| duration | 1.000 seconds | | |
| batch_size | 1 | | |
| path | path unknown | | |
| sample_rate | 44100 | | |
| num_channels | 1 | | |
| audio_data.shape | torch.Size([1, 1, 44100]) | | |
| stft_params | STFTParams(window_length=2048, hop_length=512, window_type='sqrt_hann', match_stride=False) | | |
| device | cpu | | |
""" | |
info = self._info() | |
FORMAT = "| Key | Value \n" "|---|--- \n" | |
for k, v in info.items(): | |
row = f"| {k} | {v} |\n" | |
FORMAT += row | |
return FORMAT | |
def __str__(self): | |
info = self._info() | |
desc = "" | |
for k, v in info.items(): | |
desc += f"{k}: {v}\n" | |
return desc | |
def __rich__(self): | |
from rich.table import Table | |
info = self._info() | |
table = Table(title=f"{self.__class__.__name__}") | |
table.add_column("Key", style="green") | |
table.add_column("Value", style="cyan") | |
for k, v in info.items(): | |
table.add_row(k, str(v)) | |
return table | |
# Comparison | |
def __eq__(self, other): | |
for k, v in list(self.__dict__.items()): | |
if torch.is_tensor(v): | |
if not torch.allclose(v, other.__dict__[k], atol=1e-6): | |
max_error = (v - other.__dict__[k]).abs().max() | |
print(f"Max abs error for {k}: {max_error}") | |
return False | |
return True | |
# Indexing | |
def __getitem__(self, key): | |
if torch.is_tensor(key) and key.ndim == 0 and key.item() is True: | |
assert self.batch_size == 1 | |
audio_data = self.audio_data | |
_loudness = self._loudness | |
stft_data = self.stft_data | |
elif isinstance(key, (bool, int, list, slice, tuple)) or ( | |
torch.is_tensor(key) and key.ndim <= 1 | |
): | |
# Indexing only on the batch dimension. | |
# Then let's copy over relevant stuff. | |
# Future work: make this work for time-indexing | |
# as well, using the hop length. | |
audio_data = self.audio_data[key] | |
_loudness = self._loudness[key] if self._loudness is not None else None | |
stft_data = self.stft_data[key] if self.stft_data is not None else None | |
sources = None | |
copy = type(self)(audio_data, self.sample_rate, stft_params=self.stft_params) | |
copy._loudness = _loudness | |
copy._stft_data = stft_data | |
copy.sources = sources | |
return copy | |
def __setitem__(self, key, value): | |
if not isinstance(value, type(self)): | |
self.audio_data[key] = value | |
return | |
if torch.is_tensor(key) and key.ndim == 0 and key.item() is True: | |
assert self.batch_size == 1 | |
self.audio_data = value.audio_data | |
self._loudness = value._loudness | |
self.stft_data = value.stft_data | |
return | |
elif isinstance(key, (bool, int, list, slice, tuple)) or ( | |
torch.is_tensor(key) and key.ndim <= 1 | |
): | |
if self.audio_data is not None and value.audio_data is not None: | |
self.audio_data[key] = value.audio_data | |
if self._loudness is not None and value._loudness is not None: | |
self._loudness[key] = value._loudness | |
if self.stft_data is not None and value.stft_data is not None: | |
self.stft_data[key] = value.stft_data | |
return | |
def __ne__(self, other): | |
return not self == other | |