File size: 8,416 Bytes
d9f713b
d1c5472
 
d9f713b
d1c5472
15c5870
d1c5472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
097130c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1c5472
b4d8dc7
 
 
097130c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1c5472
097130c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5d8eb
707043a
0b6eb39
707043a
0b6eb39
b4d8dc7
 
707043a
cb5d8eb
 
 
 
 
 
d1c5472
 
 
 
cb5d8eb
097130c
 
 
 
 
6cb28c0
 
 
cb5d8eb
d1c5472
097130c
6cb28c0
 
 
 
d1c5472
707043a
cb5d8eb
6cb28c0
cb5d8eb
d9f713b
cb5d8eb
 
6cb28c0
d9f713b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import shutil
import torch
import gradio as gr
from huggingface_hub import HfApi, whoami, ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from textwrap import dedent
from pathlib import Path

from tempfile import TemporaryDirectory

from huggingface_hub.file_download import repo_folder_name
from optimum.intel.utils.constant import _TASK_ALIASES
from optimum.exporters import TasksManager

from optimum.intel.utils.modeling_utils import _find_files_matching_pattern
from optimum.intel import (
    OVModelForAudioClassification,
    OVModelForCausalLM,
    OVModelForFeatureExtraction,
    OVModelForImageClassification,
    OVModelForMaskedLM,
    OVModelForQuestionAnswering,
    OVModelForSeq2SeqLM,
    OVModelForSequenceClassification,
    OVModelForTokenClassification,
    OVStableDiffusionPipeline,
    OVStableDiffusionXLPipeline,
    OVLatentConsistencyModelPipeline,
    OVModelForPix2Struct,
    OVWeightQuantizationConfig,
)
from diffusers import ConfigMixin

_HEAD_TO_AUTOMODELS = {
    "feature-extraction": "OVModelForFeatureExtraction",
    "fill-mask": "OVModelForMaskedLM",
    "text-generation": "OVModelForCausalLM",
    "text-classification": "OVModelForSequenceClassification",
    "token-classification": "OVModelForTokenClassification",
    "question-answering": "OVModelForQuestionAnswering",
    "image-classification": "OVModelForImageClassification",
    "audio-classification": "OVModelForAudioClassification",
    "stable-diffusion": "OVStableDiffusionPipeline",
    "stable-diffusion-xl": "OVStableDiffusionXLPipeline",
    "latent-consistency": "OVLatentConsistencyModelPipeline",
}


def export(model_id: str, private_repo: bool, overwritte: bool, oauth_token: gr.OAuthToken):
    if oauth_token.token is None:
        return "You must be logged in to use this space"

    if not model_id:
        return f"### Invalid input 🐞 Please specify a model name, got {model_id}"

    try:
        model_name = model_id.split("/")[-1]
        username = whoami(oauth_token.token)["name"]
        new_repo_id = f"{username}/{model_name}-openvino"
        library_name = TasksManager.infer_library_from_model(model_id, token=oauth_token.token)

        if library_name == "diffusers":
            ConfigMixin.config_name = "model_index.json"
            class_name = ConfigMixin.load_config(model_id, token=oauth_token.token)["_class_name"].lower()
            if "xl" in class_name:
                task = "stable-diffusion-xl"
            elif "consistency" in class_name:
                task = "latent-consistency"
            else:
                task = "stable-diffusion"
        else:
            task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token)

        if task == "text2text-generation":
            return "Export of Seq2Seq models is currently disabled"

        if task not in _HEAD_TO_AUTOMODELS:
            return f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported"

        auto_model_class = _HEAD_TO_AUTOMODELS[task]
        ov_files = _find_files_matching_pattern(
            model_id,
            pattern=r"(.*)?openvino(.*)?\_model.xml",
            use_auth_token=oauth_token.token,
        )

        if len(ov_files) > 0:
            return f"Model {model_id} is already converted, skipping.."

        api = HfApi(token=oauth_token.token)
        if api.repo_exists(new_repo_id) and not overwritte:
            return f"Model {new_repo_id} already exist, please set overwritte=True to push on an existing repo"

        with TemporaryDirectory() as d:
            folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
            os.makedirs(folder)
            try:
                api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])
                ov_model = eval(auto_model_class).from_pretrained(model_id, export=True, cache_dir=folder, token=oauth_token.token)
                ov_model.save_pretrained(folder)
                new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)
                new_repo_id = new_repo_url.repo_id
                print("Repo created successfully!", new_repo_url)

                folder = Path(folder)
                for dir_name in (
                    "",
                    "vae_encoder",
                    "vae_decoder",
                    "text_encoder",
                    "text_encoder_2",
                    "unet",
                    "tokenizer",
                    "tokenizer_2",
                    "scheduler",
                    "feature_extractor",
                ):
                    if not (folder / dir_name).is_dir():
                        continue
                    for file_path in (folder / dir_name).iterdir():
                        if file_path.is_file():
                            try:
                                api.upload_file(
                                    path_or_fileobj=file_path,
                                    path_in_repo=os.path.join(dir_name, file_path.name),
                                    repo_id=new_repo_id,
                                )
                            except Exception as e:
                                return f"Error uploading file {file_path}: {e}"

                try:
                    card = ModelCard.load(model_id, token=oauth_token.token)
                except:
                    card = ModelCard("")

                if card.data.tags is None:
                    card.data.tags = []
                card.data.tags.append("openvino")
                card.data.base_model = model_id
                card.text = dedent(
                    f"""
                    This model was converted to OpenVINO from [`{model_id}`](https://huggingface.co/{model_id}) using [optimum-intel](https://github.com/huggingface/optimum-intel)
                    via the [export](https://huggingface.co/spaces/echarlaix/openvino-export) space.

                    First make sure you have optimum-intel installed:

                    ```bash
                    pip install optimum[openvino]
                    ```

                    To load your model you can do as follows:

                    ```python
                    from optimum.intel import {auto_model_class}

                    model_id = "{new_repo_id}"
                    model = {auto_model_class}.from_pretrained(model_id)
                    ```
                    """
                )
                card_path = os.path.join(folder, "README.md")
                card.save(card_path)

                api.upload_file(
                    path_or_fileobj=card_path,
                    path_in_repo="README.md",
                    repo_id=new_repo_id,
                )
                return f"This model was successfully exported, find it under your repo {new_repo_url}'"
            finally:
                shutil.rmtree(folder, ignore_errors=True)
    except Exception as e:
        return f"### Error: {e}"

DESCRIPTION = """
This Space uses [Optimum Intel](https://huggingface.co/docs/optimum/main/en/intel/openvino/export) to automatically export a model from the Hub to the [OpenVINO format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html).

The resulting model will then be pushed under your HF user namespace.

The list of the supported architectures can be found in the [documentation](https://huggingface.co/docs/optimum/main/en/intel/openvino/models)
"""

model_id = HuggingfaceHubSearch(
    label="Hub Model ID",
    placeholder="Search for model id on the hub",
    search_type="model",
)
private_repo = gr.Checkbox(
    value=False,
    label="Private Repo",
    info="Create a private repo under your username",
)
overwritte = gr.Checkbox(
    value=False,
    label="Overwrite repo content",
    info="Push files on existing repo potentially overwriting existing files",
)
interface = gr.Interface(
    fn=export,
    inputs=[
        model_id,
        private_repo,
        overwritte,
    ],
    outputs=[
        gr.Markdown(label="output"),
    ],
    title="Export your model to OpenVINO",
    description=DESCRIPTION,
    api_name=False,
)

with gr.Blocks() as demo:
    gr.Markdown("You must be logged in to use this space")
    gr.LoginButton(min_width=250)
    interface.render()

demo.launch()