Spaces:
Running
Running
File size: 6,290 Bytes
d9f713b d1c5472 d9f713b d1c5472 15c5870 d1c5472 d9f713b 5172e09 d1c5472 d9f713b d1c5472 cb5d8eb d1c5472 d9f713b d1c5472 7be838c d1c5472 5172e09 7be838c d1c5472 7be838c d1c5472 cb5d8eb 707043a 0b6eb39 707043a 0b6eb39 707043a cb5d8eb d1c5472 cb5d8eb 6cb28c0 cb5d8eb d1c5472 6cb28c0 d1c5472 707043a cb5d8eb 6cb28c0 cb5d8eb d9f713b cb5d8eb 6cb28c0 d9f713b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import os
import shutil
import torch
import gradio as gr
from huggingface_hub import HfApi, whoami, ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from textwrap import dedent
from pathlib import Path
from tempfile import TemporaryDirectory
from huggingface_hub.file_download import repo_folder_name
from optimum.exporters.tasks import TasksManager
from optimum.intel.utils.constant import _TASK_ALIASES
from optimum.intel.openvino.utils import _HEAD_TO_AUTOMODELS
from optimum.exporters import TasksManager
from optimum.intel.utils.modeling_utils import _find_files_matching_pattern
from optimum.intel import (
OVModelForAudioClassification,
OVModelForCausalLM,
OVModelForFeatureExtraction,
OVModelForImageClassification,
OVModelForMaskedLM,
OVModelForQuestionAnswering,
OVModelForSeq2SeqLM,
OVModelForSequenceClassification,
OVModelForTokenClassification,
OVStableDiffusionPipeline,
OVStableDiffusionXLPipeline,
OVLatentConsistencyModelPipeline,
OVModelForPix2Struct,
OVWeightQuantizationConfig,
)
def export(model_id: str, private_repo: bool, oauth_token: gr.OAuthToken):
if oauth_token.token is None:
raise ValueError("You must be logged in to use this space")
model_name = model_id.split("/")[-1]
username = whoami(oauth_token.token)["name"]
new_repo_id = f"{username}/{model_name}-openvino"
task = TasksManager.infer_task_from_model(model_id)
if task not in _HEAD_TO_AUTOMODELS:
raise ValueError(
f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported"
)
if task == "text2text-generation":
raise ValueError("Export of Seq2Seq models is currently disabled.")
auto_model_class = _HEAD_TO_AUTOMODELS[task]
ov_files = _find_files_matching_pattern(
model_id,
pattern=r"(.*)?openvino(.*)?\_model.xml",
use_auth_token=oauth_token.token,
)
if len(ov_files) > 0:
raise Exception(f"Model {model_id} is already converted, skipping..")
api = HfApi(token=oauth_token.token)
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
try:
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])
ov_model = eval(auto_model_class).from_pretrained(model_id, export=True, cache_dir=folder)
ov_model.save_pretrained(folder)
new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)
new_repo_id = new_repo_url.repo_id
print("Repo created successfully!", new_repo_url)
folder = Path(folder)
for dir_name in (
"",
"vae_encoder",
"vae_decoder",
"text_encoder",
"text_encoder_2",
"unet",
"tokenizer",
"tokenizer_2",
"scheduler",
"feature_extractor",
):
if not (folder / dir_name).is_dir():
continue
for file_path in (folder / dir_name).iterdir():
if file_path.is_file():
try:
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=os.path.join(dir_name, file_path.name),
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading file {file_path}: {e}")
try:
card = ModelCard.load(model_id, token=oauth_token.token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.append("openvino")
card.data.base_model = model_id
card.text = dedent(
f"""
This model was converted to OpenVINO from [`{model_id}`](https://huggingface.co/{model_id}) using [optimum-intel](https://github.com/huggingface/optimum-intel)
via the [export](https://huggingface.co/spaces/echarlaix/openvino-export) space.
First make sure you have optimum-intel installed:
```bash
pip install optimum[openvino]
```
To load your model you can do as follows:
```python
from optimum.intel import {auto_model_class}
model_id = "{new_repo_id}"
model = {auto_model_class}.from_pretrained(model_id)
```
"""
)
card_path = os.path.join(folder, "README.md")
card.save(card_path)
api.upload_file(
path_or_fileobj=card_path,
path_in_repo="README.md",
repo_id=new_repo_id,
)
return f"This model was successfully exported, find it under your repo {new_repo_url}'"
finally:
shutil.rmtree(folder, ignore_errors=True)
DESCRIPTION = """
This Space uses [Optimum Intel](https://huggingface.co/docs/optimum/main/en/intel/openvino/export) to automatically export a model from the Hub to the [OpenVINO format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html).
The resulting model will then be pushed under your HF user namespace.
"""
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on the hub",
search_type="model",
)
private_repo = gr.Checkbox(
value=False,
label="Private Repo",
info="Create a private repo under your username",
)
interface = gr.Interface(
fn=export,
inputs=[
model_id,
private_repo,
],
outputs=[
gr.Markdown(label="output"),
],
title="Export your model to OpenVINO",
description=DESCRIPTION,
api_name=False,
)
with gr.Blocks() as demo:
gr.Markdown("You must be logged in to use this space")
gr.LoginButton(min_width=250)
interface.render()
demo.launch()
|