File size: 8,426 Bytes
722bb4a
 
9f5148a
 
 
 
7d9826c
25c243f
9f5148a
 
e8a3c76
25c243f
9f5148a
 
2ad137b
722bb4a
 
 
 
 
e8a3c76
 
 
 
7bfe827
722bb4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5024e57
e8a3c76
 
 
20b41d0
722bb4a
e8a3c76
 
 
722bb4a
20b41d0
e8a3c76
 
 
 
 
 
32e08c5
722bb4a
 
 
 
 
7d9826c
722bb4a
 
 
 
 
7d9826c
722bb4a
 
 
 
 
7d9826c
722bb4a
 
 
 
 
 
 
 
 
 
9f5148a
722bb4a
 
 
 
7d9826c
722bb4a
 
 
 
9f5148a
e8a3c76
722bb4a
 
 
 
 
 
 
e8a3c76
722bb4a
 
 
 
e8a3c76
 
 
722bb4a
e8a3c76
722bb4a
 
 
 
e8a3c76
722bb4a
e8a3c76
0e09841
722bb4a
 
e8a3c76
d33031f
9f5148a
 
722bb4a
 
 
9f5148a
e8a3c76
9f5148a
e8a3c76
722bb4a
9f5148a
722bb4a
 
7d9826c
722bb4a
7d9826c
e8a3c76
9f5148a
722bb4a
 
 
 
 
9f5148a
722bb4a
 
 
 
20b41d0
 
722bb4a
 
20b41d0
 
 
 
 
722bb4a
 
 
 
 
 
 
 
 
 
0e09841
722bb4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8a3c76
722bb4a
 
e8a3c76
722bb4a
d33031f
722bb4a
 
 
e8a3c76
722bb4a
 
 
9f5148a
722bb4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8a3c76
722bb4a
9f5148a
25c243f
722bb4a
e8a3c76
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python

import os
import random
import uuid
import json
import re
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import DiffusionPipeline
from typing import Tuple

# Setup rules for bad words (ensure the prompts are kid-friendly)
bad_words = json.loads(os.getenv('BAD_WORDS', '["violence", "blood", "scary", "death", "ghost"]'))
default_negative = os.getenv("default_negative","")

def check_text(prompt, negative=""):
    for i in bad_words:
        if i in prompt:
            return True
    return False

# Kid-friendly styles
style_list = [
    {
        "name": "Cartoon",
        "prompt": "colorful cartoon {prompt}. vibrant, playful, friendly, suitable for children, highly detailed, bright colors",
        "negative_prompt": "scary, dark, violent, ugly, realistic",
    },
    {
        "name": "Children's Illustration",
        "prompt": "children's illustration {prompt}. cute, colorful, fun, simple shapes, smooth lines, highly detailed, joyful",
        "negative_prompt": "scary, dark, violent, deformed, ugly",
    },   
    {
        "name": "Sticker",
        "prompt": "children's sticker of {prompt}. bright colors, playful, high resolution, cartoonish",
        "negative_prompt": "scary, dark, violent, ugly, low resolution",
    },
    {
        "name": "Fantasy",
        "prompt": "fantasy world for children with {prompt}. magical, vibrant, friendly, beautiful, colorful",
        "negative_prompt": "dark, scary, violent, ugly, realistic",
    },
    {
        "name": "(No style)",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Sticker"

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive), n + negative

DESCRIPTION = """## Children's Sticker Generator

Generate fun and playful stickers for children using AI.
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Initialize the DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
    "SG161222/RealVisXL_V3.0_Turbo",  # or any model of your choice
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16"
).to(device)

# Convert mm to pixels for a specific DPI (300) and ensure divisible by 8
def mm_to_pixels(mm, dpi=300):
    """Convert mm to pixels and make the dimensions divisible by 8."""
    pixels = int((mm / 25.4) * dpi)
    return pixels - (pixels % 8)  # Adjust to the nearest lower multiple of 8

# Default sizes for 75mm and 35mm, rounded to nearest multiple of 8
size_map = {
    "75mm": (mm_to_pixels(75), mm_to_pixels(75)),  # 75mm in pixels at 300dpi
    "35mm": (mm_to_pixels(35), mm_to_pixels(35)),  # 35mm in pixels at 300dpi
}

# Function to post-process images (transparent or white background)
def save_image(img, background="transparent"):
    img = img.convert("RGBA")
    data = img.getdata()
    new_data = []

    if background == "transparent":
        for item in data:
            # Replace white with transparent
            if item[0] == 255 and item[1] == 255 and item[2] == 255:
                new_data.append((255, 255, 255, 0))  # Transparent
            else:
                new_data.append(item)
    elif background == "white":
        for item in data:
            new_data.append(item)  # Keep as white

    img.putdata(new_data)
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(enable_queue=True)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    style: str = DEFAULT_STYLE_NAME,
    seed: int = 0,
    size: str = "75mm",
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    background: str = "transparent",
    progress=gr.Progress(track_tqdm=True),
):
    if check_text(prompt, negative_prompt):
        raise ValueError("Prompt contains restricted words.")
    
    # Ensure prompt is 2-3 words long
    prompt = " ".join(re.findall(r'\w+', prompt)[:3])

    # Apply style
    prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)

    # Ensure we have only white or transparent background options
    width, height = size_map.get(size, (1024, 1024))

    if not use_negative_prompt:
        negative_prompt = ""  # type: ignore

    options = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": 25,
        "generator": generator,
        "num_images_per_prompt": 6,  # Max 6 images
        "output_type": "pil",
    }
    
    # Generate images with the pipeline
    images = pipe(**options).images
    image_paths = [save_image(img, background) for img in images]
    
    return image_paths, seed

examples = [
    "cute bunny",
    "happy cat",
    "funny dog",
]

css = '''
.gradio-container{max-width: 700px !important}
h1{text-align:center}
'''

# Define the Gradio UI for the sticker generator
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Enter your prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter 2-3 word prompt (e.g., cute bunny)",
                container=False,
            )
            run_button = gr.Button("Run")
        result = gr.Gallery(label="Generated Stickers", columns=2, preview=True)
    with gr.Accordion("Advanced options", open=False):
        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True)
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            value="(scary, violent, dark, ugly)",
            visible=True,
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
            visible=True
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        size_selection = gr.Radio(
            choices=["75mm", "35mm"],
            value="75mm",
            label="Sticker Size",
        )
        style_selection = gr.Radio(
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Image Style",
        )
        background_selection = gr.Radio(
            choices=["transparent", "white"],
            value="transparent",
            label="Background Color",
        )
        guidance_scale = gr.Slider(
            label="Guidance Scale",
            minimum=0.1,
            maximum=20.0,
            step=0.1,
            value=6,
        )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            style_selection,
            seed,
            size_selection,
            guidance_scale,
            randomize_seed,
            background_selection,
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()