Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,426 Bytes
722bb4a 9f5148a 7d9826c 25c243f 9f5148a e8a3c76 25c243f 9f5148a 2ad137b 722bb4a e8a3c76 7bfe827 722bb4a 5024e57 e8a3c76 20b41d0 722bb4a e8a3c76 722bb4a 20b41d0 e8a3c76 32e08c5 722bb4a 7d9826c 722bb4a 7d9826c 722bb4a 7d9826c 722bb4a 9f5148a 722bb4a 7d9826c 722bb4a 9f5148a e8a3c76 722bb4a e8a3c76 722bb4a e8a3c76 722bb4a e8a3c76 722bb4a e8a3c76 722bb4a e8a3c76 0e09841 722bb4a e8a3c76 d33031f 9f5148a 722bb4a 9f5148a e8a3c76 9f5148a e8a3c76 722bb4a 9f5148a 722bb4a 7d9826c 722bb4a 7d9826c e8a3c76 9f5148a 722bb4a 9f5148a 722bb4a 20b41d0 722bb4a 20b41d0 722bb4a 0e09841 722bb4a e8a3c76 722bb4a e8a3c76 722bb4a d33031f 722bb4a e8a3c76 722bb4a 9f5148a 722bb4a e8a3c76 722bb4a 9f5148a 25c243f 722bb4a e8a3c76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
#!/usr/bin/env python
import os
import random
import uuid
import json
import re
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import DiffusionPipeline
from typing import Tuple
# Setup rules for bad words (ensure the prompts are kid-friendly)
bad_words = json.loads(os.getenv('BAD_WORDS', '["violence", "blood", "scary", "death", "ghost"]'))
default_negative = os.getenv("default_negative","")
def check_text(prompt, negative=""):
for i in bad_words:
if i in prompt:
return True
return False
# Kid-friendly styles
style_list = [
{
"name": "Cartoon",
"prompt": "colorful cartoon {prompt}. vibrant, playful, friendly, suitable for children, highly detailed, bright colors",
"negative_prompt": "scary, dark, violent, ugly, realistic",
},
{
"name": "Children's Illustration",
"prompt": "children's illustration {prompt}. cute, colorful, fun, simple shapes, smooth lines, highly detailed, joyful",
"negative_prompt": "scary, dark, violent, deformed, ugly",
},
{
"name": "Sticker",
"prompt": "children's sticker of {prompt}. bright colors, playful, high resolution, cartoonish",
"negative_prompt": "scary, dark, violent, ugly, low resolution",
},
{
"name": "Fantasy",
"prompt": "fantasy world for children with {prompt}. magical, vibrant, friendly, beautiful, colorful",
"negative_prompt": "dark, scary, violent, ugly, realistic",
},
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Sticker"
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + negative
DESCRIPTION = """## Children's Sticker Generator
Generate fun and playful stickers for children using AI.
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Initialize the DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"SG161222/RealVisXL_V3.0_Turbo", # or any model of your choice
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16"
).to(device)
# Convert mm to pixels for a specific DPI (300) and ensure divisible by 8
def mm_to_pixels(mm, dpi=300):
"""Convert mm to pixels and make the dimensions divisible by 8."""
pixels = int((mm / 25.4) * dpi)
return pixels - (pixels % 8) # Adjust to the nearest lower multiple of 8
# Default sizes for 75mm and 35mm, rounded to nearest multiple of 8
size_map = {
"75mm": (mm_to_pixels(75), mm_to_pixels(75)), # 75mm in pixels at 300dpi
"35mm": (mm_to_pixels(35), mm_to_pixels(35)), # 35mm in pixels at 300dpi
}
# Function to post-process images (transparent or white background)
def save_image(img, background="transparent"):
img = img.convert("RGBA")
data = img.getdata()
new_data = []
if background == "transparent":
for item in data:
# Replace white with transparent
if item[0] == 255 and item[1] == 255 and item[2] == 255:
new_data.append((255, 255, 255, 0)) # Transparent
else:
new_data.append(item)
elif background == "white":
for item in data:
new_data.append(item) # Keep as white
img.putdata(new_data)
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(enable_queue=True)
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style: str = DEFAULT_STYLE_NAME,
seed: int = 0,
size: str = "75mm",
guidance_scale: float = 3,
randomize_seed: bool = False,
background: str = "transparent",
progress=gr.Progress(track_tqdm=True),
):
if check_text(prompt, negative_prompt):
raise ValueError("Prompt contains restricted words.")
# Ensure prompt is 2-3 words long
prompt = " ".join(re.findall(r'\w+', prompt)[:3])
# Apply style
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator().manual_seed(seed)
# Ensure we have only white or transparent background options
width, height = size_map.get(size, (1024, 1024))
if not use_negative_prompt:
negative_prompt = "" # type: ignore
options = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": 25,
"generator": generator,
"num_images_per_prompt": 6, # Max 6 images
"output_type": "pil",
}
# Generate images with the pipeline
images = pipe(**options).images
image_paths = [save_image(img, background) for img in images]
return image_paths, seed
examples = [
"cute bunny",
"happy cat",
"funny dog",
]
css = '''
.gradio-container{max-width: 700px !important}
h1{text-align:center}
'''
# Define the Gradio UI for the sticker generator
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter 2-3 word prompt (e.g., cute bunny)",
container=False,
)
run_button = gr.Button("Run")
result = gr.Gallery(label="Generated Stickers", columns=2, preview=True)
with gr.Accordion("Advanced options", open=False):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="(scary, violent, dark, ugly)",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
size_selection = gr.Radio(
choices=["75mm", "35mm"],
value="75mm",
label="Sticker Size",
)
style_selection = gr.Radio(
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Image Style",
)
background_selection = gr.Radio(
choices=["transparent", "white"],
value="transparent",
label="Background Color",
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=6,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
seed,
size_selection,
guidance_scale,
randomize_seed,
background_selection,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |