dientes / app.py
Oscar-Hernandez's picture
Create app.py
e989416
raw
history blame
2.44 kB
import streamlit as st
from PIL import Image
import numpy as np
import cv2
from huggingface_hub import from_pretrained_keras
st.header("Segmentación de dientes con rayos X")
st.markdown('''
Hola estudiantes de Platzi 🚀. Este modelo usan UNet para segmentar imágenes
de dientos en rayos X. Se utila un modelo de Keras importado con la función
`huggingface_hub.from_pretrained_keras`. Recuerda que el Hub de Hugging Face está integrado
con muchas librerías como Keras, scikit-learn, fastai y otras.
El modelo fue creado por [SerdarHelli](https://huggingface.co/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net).
''')
model_id = "SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net"
model=from_pretrained_keras(model_id)
## Si una imagen tiene más de un canal entonces se convierte a escala de grises (1 canal)
def convertir_one_channel(img):
if len(img.shape)>2:
img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return img
else:
return img
def convertir_rgb(img):
if len(img.shape)==2:
img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
return img
else:
return img
image_file = st.file_uploader("Sube aquí tu imagen.", type=["png","jpg","jpeg"])
if image_file is not None:
img= Image.open(image_file)
st.image(img,width=850)
img=np.asarray(img)
img_cv=convertir_one_channel(img)
img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
img_cv=np.float32(img_cv/255)
img_cv=np.reshape(img_cv,(1,512,512,1))
prediction=model.predict(img_cv)
predicted=prediction[0]
predicted = cv2.resize(predicted, (img.shape[1],img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
mask=np.uint8(predicted*255)#
_, mask = cv2.threshold(mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY+cv2.THRESH_OTSU)
kernel =( np.ones((5,5), dtype=np.float32))
mask=cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel,iterations=1 )
mask=cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel,iterations=1 )
cnts,hieararch=cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
output = cv2.drawContours(convertir_one_channel(img), cnts, -1, (255, 0, 0) , 3)
if output is not None :
st.subheader("Segmentación:")
st.write(output.shape)
st.image(output,width=850)