Othniel74 commited on
Commit
c1689bf
1 Parent(s): d58f7dd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -0
app.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ import json
4
+ import plotly
5
+
6
+
7
+ def predict_fraud(selected_model, step, transaction_type, amount, oldbalanceOrg):
8
+ # URL of the Flask API deployed on Heroku
9
+ url = "https://xai-fraud-sense-7f7f48d380fe.herokuapp.com/predict_and_explain"
10
+
11
+ # Prepare the data in the format expected by the Flask API
12
+ data = {
13
+ 'selected_model': selected_model,
14
+ 'step': step,
15
+ 'transaction_type': transaction_type,
16
+ 'amount': amount,
17
+ 'oldbalanceOrg': oldbalanceOrg
18
+ }
19
+
20
+ # Send a POST request to the Flask API
21
+ response = requests.post(url, json=data)
22
+ if response.status_code == 200:
23
+ # Extract the response data
24
+ result = response.json()
25
+ prediction_text = result['prediction_text']
26
+ lime_explanation = result['lime_explanation']
27
+
28
+ # Parse the JSON strings back into Plotly figures
29
+ radial_plot_json = result['radial_plot']
30
+ bar_chart_json = result['bar_chart']
31
+ radial_plot = plotly.graph_objs.Figure(json.loads(radial_plot_json))
32
+ bar_chart = plotly.graph_objs.Figure(json.loads(bar_chart_json))
33
+
34
+ narrative = result['narrative']
35
+
36
+ # Return the results
37
+ return prediction_text, radial_plot, bar_chart, lime_explanation, narrative
38
+ else:
39
+ return "Error: " + response.text, None, None, None, None
40
+
41
+
42
+ # Organizing inputs and outputs with enhanced styling
43
+ with gr.Blocks() as iface:
44
+ gr.Markdown("<h2 style='text-align: center; font-weight: bold;'>FraudSenseXAI - Advanced Fraud Detection</h2>")
45
+ gr.Markdown("<p style='text-align: center;'>Predict and analyze fraudulent transactions.</p>", elem_id="description")
46
+
47
+ with gr.Row():
48
+ with gr.Column():
49
+ gr.Markdown("#### Input Parameters")
50
+ model_selection = gr.Dropdown(['Random Forest', 'Gradient Boost', 'Neural Network'], label="Model Selection")
51
+ step = gr.Number(value=1, label="Step")
52
+ transaction_type = gr.Dropdown(['Transfer', 'Payment', 'Cash Out', 'Cash In'], label="Transaction Type")
53
+ transaction_amount = gr.Number(label="Transaction Amount")
54
+ old_balance_org = gr.Number(label="Old Balance Org")
55
+ submit_button = gr.Button("Submit", variant="primary")
56
+
57
+ prediction_text = gr.Text(label="Prediction")
58
+ lime_explanation_text = gr.Text(label="LIME Explanation")
59
+
60
+ with gr.Column():
61
+ gr.Markdown("#### Visualization")
62
+ radial_plot = gr.Plot(label="Radial Plot")
63
+ bar_chart = gr.Plot(label="Bar Chart")
64
+ narrative_text = gr.Text(label="Narrative") # Placed in the same column
65
+
66
+ submit_button.click(
67
+ predict_fraud,
68
+ inputs=[model_selection, step, transaction_type, transaction_amount, old_balance_org],
69
+ outputs=[prediction_text, radial_plot, bar_chart, lime_explanation_text, narrative_text]
70
+ )
71
+
72
+ iface.launch(share=True)