|
import gradio as gr |
|
import os |
|
os.system("pip install transformers sentencepiece torch") |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("kyo-takano/open-calm-7b-8bit") |
|
|
|
model = AutoModelForCausalLM.from_pretrained("kyo-takano/open-calm-7b-8bit") |
|
def generate_text(input_text, temperature=0.8, max_length=20): |
|
input_ids = tokenizer.encode(input_text, return_tensors="pt") |
|
output = model.generate(input_ids, max_length=max_length, temperature=temperature) |
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return generated_text |
|
|
|
inputs = gr.inputs.Textbox(lines=2, label="Input Text") |
|
temperature = gr.inputs.Slider(minimum=0.2, maximum=1.0, default=0.8, step=0.1, label="Temperature") |
|
max_length = gr.inputs.Slider(minimum=10, maximum=50, default=20, step=5, label="Max Length") |
|
|
|
output_text = gr.outputs.Textbox(label="Generated Text") |
|
|
|
interface = gr.Interface(fn=generate_text, inputs=[inputs, temperature, max_length], outputs=output_text, title="Text Generation Interface") |
|
interface.launch() |
|
|