impart-client / utils.py
P01yH3dr0n's picture
Update utils.py
9e64d02 verified
raw
history blame
3.99 kB
import random
import io
import zipfile
import requests
import json
import base64
from PIL import Image
jwt_token = ''
url = "https://image.novelai.net/ai/generate-image"
headers = {}
def set_token(token):
global jwt_token, headers
if jwt_token == token:
return
jwt_token = token
headers = {
"Authorization": f"Bearer {jwt_token}",
"Content-Type": "application/json",
"Origin": "https://novelai.net",
"Referer": "https://novelai.net/"
}
def generate_novelai_image(
input_text="",
negative_prompt="",
seed=-1,
scale=5.0,
width=1024,
height=1024,
steps=28,
sampler="k_euler",
schedule='native',
smea=False,
dyn=False,
dyn_threshold=False,
cfg_rescale=0,
ref_image=None,
info_extract=1,
ref_str=0.6,
i2i_image=None,
i2i_str=0.7,
i2i_noise=0,
overlay=True,
inp_img=None,
selection='i2i'
):
# Assign a random seed if seed is -1
if seed == -1:
seed = random.randint(0, 2**32 - 1)
# Define the payload
payload = {
"action": "generate",
"input": input_text,
"model": "nai-diffusion-3",
"parameters": {
"width": width,
"height": height,
"scale": scale,
"sampler": sampler,
"steps": steps,
"n_samples": 1,
"ucPreset": 0,
"add_original_image": True,
"cfg_rescale": cfg_rescale,
"controlnet_strength": 1,
"dynamic_thresholding": dyn_threshold,
"params_version": 1,
"legacy": False,
"legacy_v3_extend": False,
"negative_prompt": negative_prompt,
"noise": i2i_noise,
"noise_schedule": schedule,
"qualityToggle": True,
"reference_information_extracted": info_extract,
"reference_strength": ref_str,
"seed": seed,
"sm": smea,
"sm_dyn": dyn,
"uncond_scale": 1,
"overlay": True
}
}
if ref_image is not None:
payload['parameters']['reference_image'] = image2base64(ref_image)
if selection == 'inp' and inp_img['background'].getextrema()[3][1] > 0:
payload['action'] = "infill"
payload['model'] = 'nai-diffusion-3-inpainting'
payload['parameters']['mask'] = image2base64(inp_img['layers'][0])
payload['parameters']['image'] = image2base64(inp_img['background'])
payload['parameters']['extra_noise_seed'] = seed
if i2i_image is not None and selection == 'i2i':
payload['action'] = "img2img"
payload['parameters']['image'] = image2base64(i2i_image)
payload['parameters']['strength'] = i2i_str
payload['parameters']['extra_noise_seed'] = seed
# Send the POST request
try:
response = requests.post(url, json=payload, headers=headers, timeout=20)
except:
return None, {'message': 'NAI response timeout'}
# Process the response
if response.headers.get('Content-Type') == 'binary/octet-stream':
zipfile_in_memory = io.BytesIO(response.content)
with zipfile.ZipFile(zipfile_in_memory, 'r') as zip_ref:
file_names = zip_ref.namelist()
if file_names:
with zip_ref.open(file_names[0]) as file:
return file.read(), payload
else:
return "NAI doesn't return any images", json.loads(response.content)
else:
return "Generation failed", json.loads(response.content)
def image_from_bytes(data):
img_file = io.BytesIO(data)
img_file.seek(0)
return Image.open(img_file)
def image2base64(img):
output_buffer = io.BytesIO()
img.save(output_buffer, format='PNG' if img.mode=='RGBA' else 'JPEG')
byte_data = output_buffer.getvalue()
base64_str = base64.b64encode(byte_data).decode()
return base64_str