Spaces:
Paused
Paused
from PIL import Image | |
import json | |
import html | |
import re | |
re_param_code = r'\s*([\w ]+):\s*("(?:\\.|[^\\"])+"|[^,]*)(?:,|$)' | |
re_param = re.compile(re_param_code) | |
re_imagesize = re.compile(r"^(\d+)x(\d+)$") | |
IGNORED_INFO_KEYS = { | |
'jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif', | |
'loop', 'background', 'timestamp', 'duration', 'progressive', 'progression', | |
'icc_profile', 'chromaticity', 'photoshop', | |
} | |
def plaintext_to_html(text, classname=None): | |
content = "<br>\n".join(html.escape(x) for x in text.split('\n')) | |
return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>" | |
def to_digit(v): | |
try: | |
return float(v) | |
except: | |
return v | |
def read_info_from_image(image) -> tuple[str | None, dict]: | |
if image is None: | |
return '', {} | |
elif type(image) == str: | |
image = Image.open(image) | |
items = (image.info or {}).copy() | |
info ='' | |
for field in IGNORED_INFO_KEYS: | |
items.pop(field, None) | |
if items.get("Software", None) == "NovelAI": | |
json_info = json.loads(items["Comment"]) | |
geninfo = f"""{items["Description"]} | |
Negative prompt: {json_info["uc"]} | |
Steps: {json_info["steps"]}, Sampler: {json_info['sampler']}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337""" | |
items = {**{'parameters': geninfo}, **items} | |
for key, text in items.items(): | |
info += f""" | |
<div> | |
<p><b>{plaintext_to_html(str(key))}</b></p> | |
<p>{plaintext_to_html(str(text))}</p> | |
</div> | |
""".strip()+"\n" | |
if len(info) == 0: | |
message = "Nothing found in the image." | |
info = f"<div><p>{message}<p></div>" | |
elif 'parameters' in items: | |
res = {} | |
prompt = "" | |
negative_prompt = "" | |
done_with_prompt = False | |
*lines, lastline = items['parameters'].strip().split("\n") | |
if len(re_param.findall(lastline)) < 3: | |
lines.append(lastline) | |
lastline = '' | |
for line in lines: | |
line = line.strip() | |
if line.startswith("Negative prompt:"): | |
done_with_prompt = True | |
line = line[16:].strip() | |
if done_with_prompt: | |
negative_prompt += ("" if negative_prompt == "" else "\n") + line | |
else: | |
prompt += ("" if prompt == "" else "\n") + line | |
res["prompt"] = prompt | |
res["negative prompt"] = negative_prompt | |
for k, v in re_param.findall(lastline): | |
try: | |
if v[0] == '"' and v[-1] == '"': | |
v = to_digit(json.loads(v)) | |
m = re_imagesize.match(v) | |
if m is not None: | |
res[f"{k.lower()}-1"] = to_digit(m.group(1)) | |
res[f"{k.lower()}-2"] = to_digit(m.group(2)) | |
else: | |
res[k.lower()] = v | |
except Exception: | |
print(f"Error parsing \"{k}: {v}\"") | |
return items['parameters'], res | |
else: | |
return info, {} | |
return info, json.loads(items['Comment']) | |
def send_paras(*args): | |
if len(args[0]) == 0: | |
return args[1:] | |
items, prompt, quality_tags, neg_prompt, seed, scale, width, height, steps, sampler, scheduler, smea, dyn, dyn_threshold, cfg_rescale = args | |
paras = [prompt, quality_tags, neg_prompt, seed, scale, width, height, steps, sampler, scheduler, smea, dyn, dyn_threshold, cfg_rescale] | |
for i, keys in enumerate([('prompt',), ('',), ('uc', 'negative prompt'), ('seed',), ('scale', 'cfg scale'), ('width', 'size-1'), ('height', 'size-2'), ('steps',), ('sampler',), ('noise_schedule',), ('sm',), ('sm_dyn',), ('dynamic_thresholding',), ('cfg_rescale',)]): | |
for key in keys: | |
if key in items: | |
paras[i] = items[key] | |
prompt, quality_tags, neg_prompt, seed, scale, width, height, steps, sampler, scheduler, smea, dyn, dyn_threshold, cfg_rescale = paras | |
if prompt.endswith(', ' + quality_tags): | |
prompt = prompt[:-(len(quality_tags) + 2)] | |
return prompt, quality_tags, neg_prompt, seed, scale, width, height, steps, sampler, scheduler, smea, dyn, dyn_threshold, cfg_rescale |