import random import io import zipfile import requests import json import base64 from PIL import Image jwt_token = '' url = "https://api.novelai.net/ai/generate-image" headers = {} def set_token(token): global jwt_token, headers if jwt_token == token: return jwt_token = token headers = { "Authorization": f"Bearer {jwt_token}", "Content-Type": "application/json", "Origin": "https://novelai.net", "Referer": "https://novelai.net/" } def generate_novelai_image( input_text="", negative_prompt="", seed=-1, scale=5.0, width=1024, height=1024, steps=28, sampler="k_euler", schedule='native', smea=False, dyn=False, dyn_threshold=False, cfg_rescale=0, ref_image=None, info_extract=1, ref_str=0.6, inp_img=None, overlay=False, use_inp=False, inp_str=0.7 ): # Assign a random seed if seed is -1 if seed == -1: seed = random.randint(0, 2**32 - 1) # Define the payload payload = { "action": "generate", "input": input_text, "model": "nai-diffusion-3", "parameters": { "width": width, "height": height, "scale": scale, "sampler": sampler, "steps": steps, "n_samples": 1, "ucPreset": 0, "add_original_image": overlay, "cfg_rescale": cfg_rescale, "controlnet_strength": 1, "dynamic_thresholding": dyn_threshold, "params_version": 1, "legacy": False, "legacy_v3_extend": False, "negative_prompt": negative_prompt, "noise": 0, "noise_schedule": schedule, "qualityToggle": True, "reference_information_extracted": info_extract, "reference_strength": ref_str, "seed": seed, "sm": smea, "sm_dyn": dyn, "uncond_scale": 1, } } if ref_image is not None: payload['parameters']['reference_image'] = image2base64(ref_image) if use_inp: payload['action'] = "infill" payload['model'] = 'nai-diffusion-3-inpainting' payload['parameters']['mask'] = image2base64(inp_img['mask']) payload['parameters']['image'] = image2base64(inp_img['image']) payload['parameters']['extra_noise_seed'] = seed payload['parameters']['strength'] = inp_str # Send the POST request response = requests.post(url, json=payload, headers=headers) # Process the response if response.headers.get('Content-Type') == 'application/x-zip-compressed': zipfile_in_memory = io.BytesIO(response.content) with zipfile.ZipFile(zipfile_in_memory, 'r') as zip_ref: file_names = zip_ref.namelist() if file_names: with zip_ref.open(file_names[0]) as file: return file.read(), payload else: return "NAI doesn't return any images", json.loads(response.content) else: return "Generation failed", json.loads(response.content) def image_from_bytes(data): img_file = io.BytesIO(data) img_file.seek(0) return Image.open(img_file) def image2base64(img): output_buffer = io.BytesIO() img.save(output_buffer, format='PNG' if img.mode=='RGBA' else 'JPEG') byte_data = output_buffer.getvalue() base64_str = base64.b64encode(byte_data).decode() return base64_str