Spaces:
PAIR
/
Running on A10G

File size: 1,925 Bytes
bfd34e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
from torch import nn, einsum
from einops import rearrange, repeat
from ... import share
from ..attentionpatch import painta


use_grad = True

def forward(self, x, context=None):
    # Todo: add batch inference support
    if use_grad:
        y, self_v, self_sim = self.attn1(self.norm1(x), None) # Self Attn.
        
        x_uncond, x_cond = x.chunk(2)
        context_uncond, context_cond = context.chunk(2)
        
        y_uncond, y_cond = y.chunk(2)
        self_sim_uncond, self_sim_cond = self_sim.chunk(2)
        self_v_uncond, self_v_cond = self_v.chunk(2)

        # Calculate CA similarities with conditional context
        cross_h = self.attn2.heads
        cross_q = self.attn2.to_q(self.norm2(x_cond+y_cond))
        cross_k = self.attn2.to_k(context_cond)
        cross_v = self.attn2.to_v(context_cond)

        cross_q, cross_k, cross_v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=cross_h), (cross_q, cross_k, cross_v))

        with torch.autocast(enabled=False, device_type = 'cuda'):
            cross_q, cross_k = cross_q.float(), cross_k.float()
            cross_sim = einsum('b i d, b j d -> b i j', cross_q, cross_k) * self.attn2.scale
        
        del cross_q, cross_k
        cross_sim = cross_sim.softmax(dim=-1) # Up to this point cross_sim is regular cross_sim in CA layer

        cross_sim = cross_sim.mean(dim=0) # Calculate mean across heads
        
    # PAIntA rescale
    y_cond = painta.painta_rescale(
        y_cond, self_v_cond, self_sim_cond, cross_sim, self.attn1.heads, self.attn1.to_out) # Rescale cond
    y_uncond = painta.painta_rescale(
        y_uncond, self_v_uncond, self_sim_uncond, cross_sim, self.attn1.heads, self.attn1.to_out) # Rescale uncond
    
    y = torch.cat([y_uncond, y_cond], dim=0)
    
    x = x + y
    x = x + self.attn2(self.norm2(x), context=context) # Cross Attn.
    x = x + self.ff(self.norm3(x))
    return x