Spaces:
PAIR
/
Running on A10G

Andranik Sargsyan
enable fp16, move SR to cuda:1
da1e12f
raw
history blame
3.34 kB
import torch
from lib.utils.iimage import IImage
from pytorch_lightning import seed_everything
from tqdm import tqdm
from lib.smplfusion import share, router, attentionpatch, transformerpatch
from lib.smplfusion.patches.attentionpatch import painta
from lib.utils import tokenize, scores
verbose = False
def init_painta(token_idx):
# Initialize painta
router.attention_forward = attentionpatch.painta.forward
router.basic_transformer_forward = transformerpatch.painta.forward
painta.painta_on = True
painta.painta_res = [16, 32]
painta.token_idx = token_idx
def init_guidance():
# Setup model for guidance only!
router.attention_forward = attentionpatch.default.forward_and_save
router.basic_transformer_forward = transformerpatch.default.forward
def run(ddim, method, prompt, image, mask, seed, eta, prefix, negative_prompt, positive_prompt, dt, guidance_scale):
# Text condition
prompt = prefix.format(prompt)
context = ddim.encoder.encode([negative_prompt, prompt + positive_prompt])
token_idx = list(range(1 + prefix.split(' ').index('{}'), tokenize(prompt).index('<end_of_text>')))
token_idx += [tokenize(prompt + positive_prompt).index('<end_of_text>')]
# Initialize painta
if 'painta' in method: init_painta(token_idx)
else: init_guidance()
# Image condition
unet_condition = ddim.get_inpainting_condition(image, mask)
share.set_mask(mask)
dtype = unet_condition.dtype
# Starting latent
seed_everything(seed)
zt = torch.randn((1,4) + unet_condition.shape[2:]).cuda().to(dtype)
# Setup unet for guidance
ddim.unet.requires_grad_(True)
pbar = tqdm(range(999, 0, -dt)) if verbose else range(999, 0, -dt)
for timestep in share.DDIMIterator(pbar):
if 'painta' in method and share.timestep <= 500: init_guidance()
zt = zt.detach()
zt.requires_grad = True
# Reset storage
share._crossattn_similarity_res16 = []
# Run the model
_zt = zt if unet_condition is None else torch.cat([zt, unet_condition], 1)
with torch.autocast('cuda'):
eps_uncond, eps = ddim.unet(
torch.cat([_zt, _zt]).to(dtype),
timesteps = torch.tensor([timestep, timestep]).cuda(),
context = context
).detach().chunk(2)
# Unconditional guidance
eps = (eps_uncond + guidance_scale * (eps - eps_uncond))
z0 = (zt - share.schedule.sqrt_one_minus_alphas[timestep] * eps) / share.schedule.sqrt_alphas[timestep]
# Gradient Computation
score = scores.bce(share._crossattn_similarity_res16, share.mask16, token_idx = token_idx)
score.backward()
grad = zt.grad.detach()
ddim.unet.zero_grad() # Cleanup already
# DDIM Step
with torch.no_grad():
sigma = share.schedule.sigma(share.timestep, dt)
# Standartization
grad -= grad.mean()
grad /= grad.std()
zt = share.schedule.sqrt_alphas[share.timestep - dt] * z0 + torch.sqrt(1 - share.schedule.alphas[share.timestep - dt] - sigma ** 2) * eps + eta * sigma * grad
with torch.no_grad():
output_image = IImage(ddim.vae.decode(z0 / ddim.config.scale_factor))
return output_image