Spaces:
PAIR
/
Running on A10G

Andranik Sargsyan
add demo code
bfd34e9
raw
history blame
6.18 kB
import cv2
import math
import numbers
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
from torch import nn, einsum
from einops import rearrange, repeat
from ... import share
from lib.utils.iimage import IImage
# params
painta_res = [16, 32]
painta_on = True
token_idx = [1,2]
# GaussianSmoothing is taken from https://github.com/yuval-alaluf/Attend-and-Excite/blob/main/utils/gaussian_smoothing.py
class GaussianSmoothing(nn.Module):
"""
Apply gaussian smoothing on a
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
in the input using a depthwise convolution.
Arguments:
channels (int, sequence): Number of channels of the input tensors. Output will
have this number of channels as well.
kernel_size (int, sequence): Size of the gaussian kernel.
sigma (float, sequence): Standard deviation of the gaussian kernel.
dim (int, optional): The number of dimensions of the data.
Default value is 2 (spatial).
"""
def __init__(self, channels, kernel_size, sigma, dim=2):
super(GaussianSmoothing, self).__init__()
if isinstance(kernel_size, numbers.Number):
kernel_size = [kernel_size] * dim
if isinstance(sigma, numbers.Number):
sigma = [sigma] * dim
# The gaussian kernel is the product of the
# gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid(
[
torch.arange(size, dtype=torch.float32)
for size in kernel_size
]
)
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \
torch.exp(-((mgrid - mean) / (2 * std)) ** 2)
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
self.register_buffer('weight', kernel)
self.groups = channels
if dim == 1:
self.conv = F.conv1d
elif dim == 2:
self.conv = F.conv2d
elif dim == 3:
self.conv = F.conv3d
else:
raise RuntimeError(
'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(dim)
)
def forward(self, input):
"""
Apply gaussian filter to input.
Arguments:
input (torch.Tensor): Input to apply gaussian filter on.
Returns:
filtered (torch.Tensor): Filtered output.
"""
return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups, padding='same')
def forward(self, x, context=None, mask=None):
is_cross = context is not None
att_type = "self" if context is None else "cross"
h = self.heads
q = self.to_q(x)
context = x if context is None else context
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
sim_before = sim
del q, k
if mask is not None:
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
if hasattr(share, '_crossattn_similarity_res8') and x.shape[1] == share.input_shape.res8 and att_type == 'cross':
share._crossattn_similarity_res8.append(torch.stack(share.reshape(sim).chunk(2))) # Chunk into 2 parts to differentiate the unconditional and conditional parts
if hasattr(share, '_crossattn_similarity_res16') and x.shape[1] == share.input_shape.res16 and att_type == 'cross':
share._crossattn_similarity_res16.append(torch.stack(share.reshape(sim).chunk(2))) # Chunk into 2 parts to differentiate the unconditional and conditional parts
if hasattr(share, '_crossattn_similarity_res32') and x.shape[1] == share.input_shape.res32 and att_type == 'cross':
share._crossattn_similarity_res32.append(torch.stack(share.reshape(sim).chunk(2))) # Chunk into 2 parts to differentiate the unconditional and conditional parts
if hasattr(share, '_crossattn_similarity_res64') and x.shape[1] == share.input_shape.res64 and att_type == 'cross':
share._crossattn_similarity_res64.append(torch.stack(share.reshape(sim).chunk(2))) # Chunk into 2 parts to differentiate the unconditional and conditional parts
sim = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', sim, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
if is_cross:
return self.to_out(out)
return self.to_out(out), v, sim_before
def painta_rescale(y, self_v, self_sim, cross_sim, self_h, to_out):
mask = share.painta_mask.get_res(self_v)
shape = share.painta_mask.get_shape(self_v)
res = share.painta_mask.get_res_val(self_v)
mask = (mask > 0.5).to(y.dtype)
m = mask.to(self_v.device)
m = rearrange(m, 'b c h w -> b (h w) c').contiguous()
m = torch.matmul(m, m.permute(0, 2, 1)) + (1-m)
cross_sim = cross_sim[:, token_idx].sum(dim=1)
cross_sim = cross_sim.reshape(shape)
gaussian_smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).cuda()
cross_sim = gaussian_smoothing(cross_sim.unsqueeze(0))[0] # optional smoothing
cross_sim = cross_sim.reshape(-1)
cross_sim = ((cross_sim - torch.median(cross_sim.ravel())) / torch.max(cross_sim.ravel())).clip(0, 1)
if painta_on and res in painta_res:
c = (1 - m) * cross_sim.reshape(1, 1, -1) + m
self_sim = self_sim * c
self_sim = self_sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', self_sim, self_v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=self_h)
out = to_out(out)
else:
out = y
return out