Spaces:
Running
on
A10G
Running
on
A10G
from omegaconf import OmegaConf | |
import torch | |
from lib.smplfusion import DDIM, share, scheduler | |
from .common import * | |
DOWNLOAD_URL = 'https://huggingface.co/runwayml/stable-diffusion-inpainting/resolve/main/sd-v1-5-inpainting.ckpt?download=true' | |
MODEL_PATH = f'{MODEL_FOLDER}/sd-1-5-inpainting/sd-v1-5-inpainting.ckpt' | |
# pre-download | |
download_file(DOWNLOAD_URL, MODEL_PATH) | |
def load_model(dtype=torch.float16): | |
download_file(DOWNLOAD_URL, MODEL_PATH) | |
state_dict = torch.load(MODEL_PATH)['state_dict'] | |
config = OmegaConf.load(f'{CONFIG_FOLDER}/ddpm/v1.yaml') | |
print ("Loading model: Stable-Inpainting 1.5") | |
unet = load_obj(f'{CONFIG_FOLDER}/unet/inpainting/v1.yaml').eval().cuda() | |
vae = load_obj(f'{CONFIG_FOLDER}/vae.yaml').eval().cuda() | |
encoder = load_obj(f'{CONFIG_FOLDER}/encoders/clip.yaml').eval().cuda() | |
extract = lambda state_dict, model: {x[len(model)+1:]:y for x,y in state_dict.items() if model in x} | |
unet_state = extract(state_dict, 'model.diffusion_model') | |
encoder_state = extract(state_dict, 'cond_stage_model') | |
vae_state = extract(state_dict, 'first_stage_model') | |
unet.load_state_dict(unet_state) | |
encoder.load_state_dict(encoder_state) | |
vae.load_state_dict(vae_state) | |
if dtype == torch.float16: | |
unet.convert_to_fp16() | |
vae.to(dtype) | |
encoder.to(dtype) | |
unet = unet.requires_grad_(False) | |
encoder = encoder.requires_grad_(False) | |
vae = vae.requires_grad_(False) | |
ddim = DDIM(config, vae, encoder, unet) | |
share.schedule = scheduler.linear(config.timesteps, config.linear_start, config.linear_end) | |
return ddim | |