Spaces:
Running
on
A10G
Running
on
A10G
Andranik Sargsyan
commited on
Commit
β’
736e88e
1
Parent(s):
08504da
refactor code
Browse files- app.py +70 -38
- lib/methods/rasg.py +24 -6
- lib/methods/sd.py +14 -10
- lib/methods/sr.py +42 -37
app.py
CHANGED
@@ -75,8 +75,12 @@ def set_model_from_name(inp_model_name):
|
|
75 |
inp_model = inpainting_models[inp_model_name]
|
76 |
|
77 |
|
78 |
-
def rasg_run(
|
79 |
-
|
|
|
|
|
|
|
|
|
80 |
torch.cuda.empty_cache()
|
81 |
|
82 |
seed = int(seed)
|
@@ -87,35 +91,44 @@ guidance_scale=7.5, batch_size=4):
|
|
87 |
|
88 |
method = ['rasg']
|
89 |
if use_painta: method.append('painta')
|
|
|
90 |
|
91 |
inpainted_images = []
|
92 |
blended_images = []
|
93 |
for i in range(batch_size):
|
|
|
|
|
94 |
inpainted_image = rasg.run(
|
95 |
-
ddim
|
96 |
-
method
|
97 |
-
prompt
|
98 |
-
image
|
99 |
-
mask
|
100 |
-
seed
|
101 |
-
eta
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
guidance_scale = guidance_scale
|
107 |
).crop(image.size)
|
108 |
-
blended_image = poisson_blend(orig_img = image.data[0], fake_img = inpainted_image.data[0],
|
109 |
-
mask = mask.data[0], dilation = 12)
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
blended_images.append(blended_image)
|
112 |
inpainted_images.append(inpainted_image.numpy()[0])
|
113 |
|
114 |
return blended_images, inpainted_images
|
115 |
|
116 |
|
117 |
-
def sd_run(use_painta, prompt, input, seed, eta,
|
118 |
-
|
|
|
|
|
|
|
119 |
torch.cuda.empty_cache()
|
120 |
|
121 |
seed = int(seed)
|
@@ -126,28 +139,33 @@ guidance_scale=7.5, batch_size=4):
|
|
126 |
|
127 |
method = ['default']
|
128 |
if use_painta: method.append('painta')
|
|
|
129 |
|
130 |
inpainted_images = []
|
131 |
blended_images = []
|
132 |
for i in range(batch_size):
|
|
|
|
|
133 |
inpainted_image = sd.run(
|
134 |
-
ddim
|
135 |
-
method
|
136 |
-
prompt
|
137 |
-
image
|
138 |
-
mask
|
139 |
-
seed
|
140 |
-
eta
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
guidance_scale = guidance_scale
|
146 |
).crop(image.size)
|
147 |
|
148 |
-
blended_image = poisson_blend(
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
151 |
blended_images.append(blended_image)
|
152 |
inpainted_images.append(inpainted_image.numpy()[0])
|
153 |
|
@@ -156,7 +174,9 @@ guidance_scale=7.5, batch_size=4):
|
|
156 |
|
157 |
def upscale_run(
|
158 |
prompt, input, ddim_steps, seed, use_sam_mask, gallery, img_index,
|
159 |
-
negative_prompt='',
|
|
|
|
|
160 |
torch.cuda.empty_cache()
|
161 |
|
162 |
seed = int(seed)
|
@@ -169,10 +189,22 @@ negative_prompt='', positive_prompt=', high resolution professional photo'):
|
|
169 |
lr_image = IImage(inpainted_image)
|
170 |
hr_image = IImage(input['image']).resize(2048)
|
171 |
hr_mask = IImage(input['mask']).resize(2048)
|
172 |
-
output_image = sr.run(
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
|
178 |
def switch_run(use_rasg, model_name, *args):
|
|
|
75 |
inp_model = inpainting_models[inp_model_name]
|
76 |
|
77 |
|
78 |
+
def rasg_run(
|
79 |
+
use_painta, prompt, input, seed, eta,
|
80 |
+
negative_prompt, positive_prompt, ddim_steps,
|
81 |
+
guidance_scale=7.5,
|
82 |
+
batch_size=1
|
83 |
+
):
|
84 |
torch.cuda.empty_cache()
|
85 |
|
86 |
seed = int(seed)
|
|
|
91 |
|
92 |
method = ['rasg']
|
93 |
if use_painta: method.append('painta')
|
94 |
+
method = '-'.join(method)
|
95 |
|
96 |
inpainted_images = []
|
97 |
blended_images = []
|
98 |
for i in range(batch_size):
|
99 |
+
seed = seed + i * 1000
|
100 |
+
|
101 |
inpainted_image = rasg.run(
|
102 |
+
ddim=inp_model,
|
103 |
+
method=method,
|
104 |
+
prompt=prompt,
|
105 |
+
image=image,
|
106 |
+
mask=mask,
|
107 |
+
seed=seed,
|
108 |
+
eta=eta,
|
109 |
+
negative_prompt=negative_prompt,
|
110 |
+
positive_prompt=positive_prompt,
|
111 |
+
num_steps=ddim_steps,
|
112 |
+
guidance_scale=guidance_scale
|
|
|
113 |
).crop(image.size)
|
|
|
|
|
114 |
|
115 |
+
blended_image = poisson_blend(
|
116 |
+
orig_img=image.data[0],
|
117 |
+
fake_img=inpainted_image.data[0],
|
118 |
+
mask=mask.data[0],
|
119 |
+
dilation=12
|
120 |
+
)
|
121 |
blended_images.append(blended_image)
|
122 |
inpainted_images.append(inpainted_image.numpy()[0])
|
123 |
|
124 |
return blended_images, inpainted_images
|
125 |
|
126 |
|
127 |
+
def sd_run(use_painta, prompt, input, seed, eta,
|
128 |
+
negative_prompt, positive_prompt, ddim_steps,
|
129 |
+
guidance_scale=7.5,
|
130 |
+
batch_size=1
|
131 |
+
):
|
132 |
torch.cuda.empty_cache()
|
133 |
|
134 |
seed = int(seed)
|
|
|
139 |
|
140 |
method = ['default']
|
141 |
if use_painta: method.append('painta')
|
142 |
+
method = '-'.join(method)
|
143 |
|
144 |
inpainted_images = []
|
145 |
blended_images = []
|
146 |
for i in range(batch_size):
|
147 |
+
seed = seed + i * 1000
|
148 |
+
|
149 |
inpainted_image = sd.run(
|
150 |
+
ddim=inp_model,
|
151 |
+
method=method,
|
152 |
+
prompt=prompt,
|
153 |
+
image=image,
|
154 |
+
mask=mask,
|
155 |
+
seed=seed,
|
156 |
+
eta=eta,
|
157 |
+
negative_prompt=negative_prompt,
|
158 |
+
positive_prompt=positive_prompt,
|
159 |
+
num_steps=ddim_steps,
|
160 |
+
guidance_scale=guidance_scale
|
|
|
161 |
).crop(image.size)
|
162 |
|
163 |
+
blended_image = poisson_blend(
|
164 |
+
orig_img=image.data[0],
|
165 |
+
fake_img=inpainted_image.data[0],
|
166 |
+
mask=mask.data[0],
|
167 |
+
dilation=12
|
168 |
+
)
|
169 |
blended_images.append(blended_image)
|
170 |
inpainted_images.append(inpainted_image.numpy()[0])
|
171 |
|
|
|
174 |
|
175 |
def upscale_run(
|
176 |
prompt, input, ddim_steps, seed, use_sam_mask, gallery, img_index,
|
177 |
+
negative_prompt='',
|
178 |
+
positive_prompt=', high resolution professional photo'
|
179 |
+
):
|
180 |
torch.cuda.empty_cache()
|
181 |
|
182 |
seed = int(seed)
|
|
|
189 |
lr_image = IImage(inpainted_image)
|
190 |
hr_image = IImage(input['image']).resize(2048)
|
191 |
hr_mask = IImage(input['mask']).resize(2048)
|
192 |
+
output_image = sr.run(
|
193 |
+
sr_model,
|
194 |
+
sam_predictor,
|
195 |
+
lr_image,
|
196 |
+
hr_image,
|
197 |
+
hr_mask,
|
198 |
+
prompt=prompt + positive_prompt,
|
199 |
+
noise_level=20,
|
200 |
+
blend_trick=True,
|
201 |
+
blend_output=True,
|
202 |
+
negative_prompt=negative_prompt,
|
203 |
+
seed=seed,
|
204 |
+
use_sam_mask=use_sam_mask
|
205 |
+
)
|
206 |
+
output_image.info = input['image'].info # save metadata
|
207 |
+
return output_image, output_image
|
208 |
|
209 |
|
210 |
def switch_run(use_rasg, model_name, *args):
|
lib/methods/rasg.py
CHANGED
@@ -23,12 +23,28 @@ def init_guidance():
|
|
23 |
router.attention_forward = attentionpatch.default.forward_and_save
|
24 |
router.basic_transformer_forward = transformerpatch.default.forward
|
25 |
|
26 |
-
def run(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# Text condition
|
28 |
-
|
29 |
-
|
30 |
-
token_idx
|
31 |
-
token_idx += [tokenize(prompt + positive_prompt).index('<end_of_text>')]
|
32 |
|
33 |
# Initialize painta
|
34 |
if 'painta' in method: init_painta(token_idx)
|
@@ -84,7 +100,9 @@ def run(ddim, method, prompt, image, mask, seed, eta, prefix, negative_prompt, p
|
|
84 |
grad -= grad.mean()
|
85 |
grad /= grad.std()
|
86 |
|
87 |
-
zt = share.schedule.sqrt_alphas[share.timestep - dt] * z0 +
|
|
|
|
|
88 |
|
89 |
with torch.no_grad():
|
90 |
output_image = IImage(ddim.vae.decode(z0 / ddim.config.scale_factor))
|
|
|
23 |
router.attention_forward = attentionpatch.default.forward_and_save
|
24 |
router.basic_transformer_forward = transformerpatch.default.forward
|
25 |
|
26 |
+
def run(
|
27 |
+
ddim,
|
28 |
+
method,
|
29 |
+
prompt,
|
30 |
+
image,
|
31 |
+
mask,
|
32 |
+
seed=0,
|
33 |
+
eta=0.1,
|
34 |
+
negative_prompt='',
|
35 |
+
positive_prompt='',
|
36 |
+
num_steps=50,
|
37 |
+
guidance_scale=7.5
|
38 |
+
):
|
39 |
+
image = image.padx(64)
|
40 |
+
mask = mask.alpha().padx(64)
|
41 |
+
full_prompt = f'{prompt}, {positive_prompt}'
|
42 |
+
dt = 1000 // num_steps
|
43 |
+
|
44 |
# Text condition
|
45 |
+
context = ddim.encoder.encode([negative_prompt, full_prompt])
|
46 |
+
token_idx = list(range(1, tokenize(prompt).index('<end_of_text>')))
|
47 |
+
token_idx += [tokenize(full_prompt).index('<end_of_text>')]
|
|
|
48 |
|
49 |
# Initialize painta
|
50 |
if 'painta' in method: init_painta(token_idx)
|
|
|
100 |
grad -= grad.mean()
|
101 |
grad /= grad.std()
|
102 |
|
103 |
+
zt = share.schedule.sqrt_alphas[share.timestep - dt] * z0 + \
|
104 |
+
torch.sqrt(1 - share.schedule.alphas[share.timestep - dt] - sigma ** 2) * eps + \
|
105 |
+
eta * sigma * grad
|
106 |
|
107 |
with torch.no_grad():
|
108 |
output_image = IImage(ddim.vae.decode(z0 / ddim.config.scale_factor))
|
lib/methods/sd.py
CHANGED
@@ -24,18 +24,22 @@ def run(
|
|
24 |
prompt,
|
25 |
image,
|
26 |
mask,
|
27 |
-
seed,
|
28 |
-
eta,
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
guidance_scale
|
34 |
):
|
|
|
|
|
|
|
|
|
|
|
35 |
# Text condition
|
36 |
-
context = ddim.encoder.encode([negative_prompt,
|
37 |
-
token_idx = list(range(1
|
38 |
-
token_idx += [tokenize(
|
39 |
|
40 |
# Setup painta if needed
|
41 |
if 'painta' in method: init_painta(token_idx)
|
|
|
24 |
prompt,
|
25 |
image,
|
26 |
mask,
|
27 |
+
seed=0,
|
28 |
+
eta=0.1,
|
29 |
+
negative_prompt='',
|
30 |
+
positive_prompt='',
|
31 |
+
num_steps=50,
|
32 |
+
guidance_scale=7.5
|
|
|
33 |
):
|
34 |
+
image = image.padx(64)
|
35 |
+
mask = mask.alpha().padx(64)
|
36 |
+
full_prompt = f'{prompt}, {positive_prompt}'
|
37 |
+
dt = 1000 // num_steps
|
38 |
+
|
39 |
# Text condition
|
40 |
+
context = ddim.encoder.encode([negative_prompt, full_prompt])
|
41 |
+
token_idx = list(range(1, tokenize(prompt).index('<end_of_text>')))
|
42 |
+
token_idx += [tokenize(full_prompt).index('<end_of_text>')]
|
43 |
|
44 |
# Setup painta if needed
|
45 |
if 'painta' in method: init_painta(token_idx)
|
lib/methods/sr.py
CHANGED
@@ -57,9 +57,22 @@ def refine_mask(hr_image, hr_mask, lr_image, sam_predictor):
|
|
57 |
return new_mask
|
58 |
|
59 |
|
60 |
-
def run(
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
torch.manual_seed(seed)
|
64 |
dtype = ddim.vae.encoder.conv_in.weight.dtype
|
65 |
device = ddim.vae.encoder.conv_in.weight.device
|
@@ -67,6 +80,9 @@ dt = 50, seed = 1, guidance_scale = 7.5, negative_prompt = '', use_sam_mask = Fa
|
|
67 |
router.attention_forward = attentionpatch.default.forward_xformers
|
68 |
router.basic_transformer_forward = transformerpatch.default.forward
|
69 |
|
|
|
|
|
|
|
70 |
if use_sam_mask:
|
71 |
with torch.no_grad():
|
72 |
hr_mask = refine_mask(hr_image, hr_mask, lr_image, sam_predictor)
|
@@ -74,70 +90,59 @@ dt = 50, seed = 1, guidance_scale = 7.5, negative_prompt = '', use_sam_mask = Fa
|
|
74 |
orig_h, orig_w = hr_image.torch().shape[2], hr_image.torch().shape[3]
|
75 |
hr_image = hr_image.padx(256, padding_mode='reflect')
|
76 |
hr_mask = hr_mask.padx(256, padding_mode='reflect').dilate(19)
|
77 |
-
|
78 |
-
lr_image = lr_image.padx(64, padding_mode='reflect')
|
79 |
-
lr_mask = hr_mask.resize((lr_image.
|
|
|
80 |
lr_mask = TvF.gaussian_blur(lr_mask, kernel_size=19)
|
81 |
-
|
82 |
-
if no_superres:
|
83 |
-
output_tensor = lr_image.resize((hr_image.torch().shape[2], hr_image.torch().shape[3]), resample = Image.BICUBIC).torch().cuda()
|
84 |
-
output_tensor = (255*((output_tensor.clip(-1, 1) + 1) / 2)).to(torch.uint8)
|
85 |
-
output_tensor = poisson_blend(
|
86 |
-
orig_img=hr_image.data[0][:orig_h, :orig_w, :],
|
87 |
-
fake_img=output_tensor.cpu().permute(0, 2, 3, 1)[0].numpy()[:orig_h, :orig_w, :],
|
88 |
-
mask=hr_mask_orig.alpha().data[0][:orig_h, :orig_w, :]
|
89 |
-
)
|
90 |
-
return IImage(output_tensor[:orig_h, :orig_w, :])
|
91 |
|
92 |
# encode hr image
|
93 |
with torch.no_grad():
|
94 |
-
|
|
|
95 |
|
96 |
-
assert hr_z0.shape[2] == lr_image.
|
97 |
-
assert hr_z0.shape[3] == lr_image.
|
98 |
|
99 |
-
unet_condition = lr_image.cuda().torch().to(memory_format=torch.contiguous_format).to(dtype=dtype, device=device)
|
100 |
-
zT = torch.randn((1,4,unet_condition.shape[2], unet_condition.shape[3])).cuda().to(dtype=dtype, device=device)
|
101 |
-
|
102 |
with torch.no_grad():
|
103 |
context = ddim.encoder.encode([negative_prompt, prompt])
|
104 |
-
|
105 |
noise_level = torch.Tensor(1 * [noise_level]).to(device=device).long()
|
|
|
106 |
unet_condition, noise_level = ddim.low_scale_model(unet_condition, noise_level=noise_level)
|
107 |
|
108 |
with torch.autocast('cuda'), torch.no_grad():
|
109 |
-
zt =
|
|
|
110 |
for index,t in enumerate(range(999, 0, -dt)):
|
111 |
-
|
112 |
_zt = zt if unet_condition is None else torch.cat([zt, unet_condition], 1)
|
113 |
-
|
114 |
eps_uncond, eps = ddim.unet(
|
115 |
torch.cat([_zt, _zt]).to(dtype=dtype, device=device),
|
116 |
timesteps = torch.tensor([t, t]).to(device=device),
|
117 |
context = context,
|
118 |
y=torch.cat([noise_level]*2)
|
119 |
).chunk(2)
|
120 |
-
|
121 |
ts = torch.full((zt.shape[0],), t, device=device, dtype=torch.long)
|
122 |
model_output = (eps_uncond + guidance_scale * (eps - eps_uncond))
|
123 |
eps = predict_eps_from_z_and_v(ddim.schedule, zt, ts, model_output).to(dtype)
|
124 |
z0 = predict_start_from_z_and_v(ddim.schedule, zt, ts, model_output).to(dtype)
|
125 |
-
|
126 |
if blend_trick:
|
127 |
z0 = z0 * lr_mask + hr_z0 * (1-lr_mask)
|
128 |
-
|
129 |
zt = ddim.schedule.sqrt_alphas[t - dt] * z0 + ddim.schedule.sqrt_one_minus_alphas[t - dt] * eps
|
130 |
|
131 |
with torch.no_grad():
|
132 |
-
|
|
|
|
|
|
|
|
|
133 |
|
134 |
if blend_output:
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
mask=hr_mask_orig.alpha().data[0][:orig_h, :orig_w, :]
|
140 |
)
|
141 |
-
return
|
142 |
else:
|
143 |
-
return
|
|
|
57 |
return new_mask
|
58 |
|
59 |
|
60 |
+
def run(
|
61 |
+
ddim,
|
62 |
+
sam_predictor,
|
63 |
+
lr_image,
|
64 |
+
hr_image,
|
65 |
+
hr_mask,
|
66 |
+
prompt = 'high resolution professional photo',
|
67 |
+
noise_level=20,
|
68 |
+
blend_output = True,
|
69 |
+
blend_trick = True,
|
70 |
+
dt = 50,
|
71 |
+
seed = 1,
|
72 |
+
guidance_scale = 7.5,
|
73 |
+
negative_prompt = '',
|
74 |
+
use_sam_mask = False
|
75 |
+
):
|
76 |
torch.manual_seed(seed)
|
77 |
dtype = ddim.vae.encoder.conv_in.weight.dtype
|
78 |
device = ddim.vae.encoder.conv_in.weight.device
|
|
|
80 |
router.attention_forward = attentionpatch.default.forward_xformers
|
81 |
router.basic_transformer_forward = transformerpatch.default.forward
|
82 |
|
83 |
+
hr_image_orig = hr_image
|
84 |
+
hr_mask_orig = hr_mask
|
85 |
+
|
86 |
if use_sam_mask:
|
87 |
with torch.no_grad():
|
88 |
hr_mask = refine_mask(hr_image, hr_mask, lr_image, sam_predictor)
|
|
|
90 |
orig_h, orig_w = hr_image.torch().shape[2], hr_image.torch().shape[3]
|
91 |
hr_image = hr_image.padx(256, padding_mode='reflect')
|
92 |
hr_mask = hr_mask.padx(256, padding_mode='reflect').dilate(19)
|
93 |
+
|
94 |
+
lr_image = lr_image.padx(64, padding_mode='reflect').torch()
|
95 |
+
lr_mask = hr_mask.resize((lr_image.shape[2:]), resample = Image.BICUBIC)
|
96 |
+
lr_mask = lr_mask.alpha().torch(vmin=0).to(device)
|
97 |
lr_mask = TvF.gaussian_blur(lr_mask, kernel_size=19)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
# encode hr image
|
100 |
with torch.no_grad():
|
101 |
+
hr_image = hr_image.torch().to(dtype=dtype, device=device)
|
102 |
+
hr_z0 = ddim.vae.encode(hr_image).mean * ddim.config.scale_factor
|
103 |
|
104 |
+
assert hr_z0.shape[2] == lr_image.shape[2]
|
105 |
+
assert hr_z0.shape[3] == lr_image.shape[3]
|
106 |
|
|
|
|
|
|
|
107 |
with torch.no_grad():
|
108 |
context = ddim.encoder.encode([negative_prompt, prompt])
|
109 |
+
|
110 |
noise_level = torch.Tensor(1 * [noise_level]).to(device=device).long()
|
111 |
+
unet_condition = lr_image.to(dtype=dtype, device=device, memory_format=torch.contiguous_format)
|
112 |
unet_condition, noise_level = ddim.low_scale_model(unet_condition, noise_level=noise_level)
|
113 |
|
114 |
with torch.autocast('cuda'), torch.no_grad():
|
115 |
+
zt = torch.randn((1,4,unet_condition.shape[2], unet_condition.shape[3]))
|
116 |
+
zt = zt.cuda().to(dtype=dtype, device=device)
|
117 |
for index,t in enumerate(range(999, 0, -dt)):
|
|
|
118 |
_zt = zt if unet_condition is None else torch.cat([zt, unet_condition], 1)
|
|
|
119 |
eps_uncond, eps = ddim.unet(
|
120 |
torch.cat([_zt, _zt]).to(dtype=dtype, device=device),
|
121 |
timesteps = torch.tensor([t, t]).to(device=device),
|
122 |
context = context,
|
123 |
y=torch.cat([noise_level]*2)
|
124 |
).chunk(2)
|
|
|
125 |
ts = torch.full((zt.shape[0],), t, device=device, dtype=torch.long)
|
126 |
model_output = (eps_uncond + guidance_scale * (eps - eps_uncond))
|
127 |
eps = predict_eps_from_z_and_v(ddim.schedule, zt, ts, model_output).to(dtype)
|
128 |
z0 = predict_start_from_z_and_v(ddim.schedule, zt, ts, model_output).to(dtype)
|
|
|
129 |
if blend_trick:
|
130 |
z0 = z0 * lr_mask + hr_z0 * (1-lr_mask)
|
|
|
131 |
zt = ddim.schedule.sqrt_alphas[t - dt] * z0 + ddim.schedule.sqrt_one_minus_alphas[t - dt] * eps
|
132 |
|
133 |
with torch.no_grad():
|
134 |
+
hr_result = ddim.vae.decode(z0.to(dtype) / ddim.config.scale_factor)
|
135 |
+
# postprocess
|
136 |
+
hr_result = (255 * ((hr_result + 1) / 2).clip(0, 1)).to(torch.uint8)
|
137 |
+
hr_result = hr_result.cpu().permute(0, 2, 3, 1)[0].numpy()
|
138 |
+
hr_result = hr_result[:orig_h, :orig_w, :]
|
139 |
|
140 |
if blend_output:
|
141 |
+
hr_result = poisson_blend(
|
142 |
+
orig_img=hr_image_orig.data[0],
|
143 |
+
fake_img=hr_result,
|
144 |
+
mask=hr_mask_orig.alpha().data[0]
|
|
|
145 |
)
|
146 |
+
return Image.fromarray(hr_result)
|
147 |
else:
|
148 |
+
return Image.fromarray(hr_result)
|