File size: 29,086 Bytes
2171e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
import einops
import torch
import torch as th
import torch.nn as nn
import math

from ldm.modules.diffusionmodules.util import (
    conv_nd,
    linear,
    zero_module,
    timestep_embedding,
)
import torchvision
from einops import rearrange, repeat
from torchvision.utils import make_grid
from ldm.modules.attention import SpatialTransformer
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.util import log_txt_as_img, exists, instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler


class VGGPerceptualLoss(torch.nn.Module):
    def __init__(self, resize=True):
        super(VGGPerceptualLoss, self).__init__()
        blocks = []
        vgg_model = torchvision.models.vgg16(pretrained=True)
        print('Loaded VGG weights')
        blocks.append(vgg_model.features[:4].eval())
        blocks.append(vgg_model.features[4:9].eval())
        blocks.append(vgg_model.features[9:16].eval())
        blocks.append(vgg_model.features[16:23].eval())
        
        for bl in blocks:
            for p in bl.parameters():
                p.requires_grad = False
        self.blocks = torch.nn.ModuleList(blocks)
        self.transform = torch.nn.functional.interpolate
        self.resize = resize
        self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
        self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
        print('Initialized VGG model')

    def forward(self, input, feature_layers=[0, 1, 2, 3], style_layers=[1,]):
        if input.shape[1] != 3:
            input = input.repeat(1, 3, 1, 1)
            target = target.repeat(1, 3, 1, 1)
        input = (input-self.mean) / self.std
        if self.resize:
            input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False)
        x = input
        gram_matrices_all = []
        feats = []
        for i, block in enumerate(self.blocks):
            x = block(x)
            if i in style_layers:
                feats.append(x)
                
        return  feats
    


class ControlledUnetModel(UNetModel):
    def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
        hs = []
        with torch.no_grad():
            t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
            emb = self.time_embed(t_emb)
            h = x.type(self.dtype)
            for module in self.input_blocks:
                h = module(h, emb, context)
                hs.append(h)
            h = self.middle_block(h, emb, context)

        if control is not None:
            h += control.pop()

        for i, module in enumerate(self.output_blocks):
            if only_mid_control or control is None:
                h = torch.cat([h, hs.pop()], dim=1)
            else:
                h = torch.cat([h, hs.pop() + control.pop()], dim=1)
            h = module(h, emb, context)

        h = h.type(x.dtype)
        return self.out(h)


class ControlNet(nn.Module):
    def __init__(
            self,
            image_size,
            in_channels,
            model_channels,
            hint_channels,
            num_res_blocks,
            attention_resolutions,
            dropout=0,
            channel_mult=(1, 2, 4, 8),
            conv_resample=True,
            dims=2,
            use_checkpoint=False,
            use_fp16=False,
            num_heads=-1,
            num_head_channels=-1,
            num_heads_upsample=-1,
            use_scale_shift_norm=False,
            resblock_updown=False,
            use_new_attention_order=False,
            use_spatial_transformer=False,  # custom transformer support
            transformer_depth=1,  # custom transformer support
            context_dim=None,  # custom transformer support
            n_embed=None,  # custom support for prediction of discrete ids into codebook of first stage vq model
            legacy=True,
            disable_self_attentions=None,
            num_attention_blocks=None,
            disable_middle_self_attn=False,
            use_linear_in_transformer=False,
    ):
        super().__init__()
        if use_spatial_transformer:
            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'

        if context_dim is not None:
            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
            from omegaconf.listconfig import ListConfig
            if type(context_dim) == ListConfig:
                context_dim = list(context_dim)

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'

        if num_head_channels == -1:
            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'

        self.dims = dims
        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            if len(num_res_blocks) != len(channel_mult):
                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
                                 "as a list/tuple (per-level) with the same length as channel_mult")
            self.num_res_blocks = num_res_blocks
        if disable_self_attentions is not None:
            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)
            assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
            print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
                  f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
                  f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
                  f"attention will still not be set.")

        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.use_checkpoint = use_checkpoint
        self.dtype = th.float16 if use_fp16 else th.float32
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
                    conv_nd(dims, in_channels, model_channels, 3, padding=1)
                )
            ]
        )
        self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])

        self.input_hint_block = TimestepEmbedSequential(
            conv_nd(dims, hint_channels, 16, 3, padding=1),
            nn.SiLU(),
            conv_nd(dims, 16, 16, 3, padding=1),
            nn.SiLU(),
            conv_nd(dims, 16, 32, 3, padding=1, stride=2),
            nn.SiLU(),
            conv_nd(dims, 32, 32, 3, padding=1),
            nn.SiLU(),
            conv_nd(dims, 32, 96, 3, padding=1, stride=2),
            nn.SiLU(),
            conv_nd(dims, 96, 96, 3, padding=1),
            nn.SiLU(),
            conv_nd(dims, 96, 256, 3, padding=1, stride=2),
            nn.SiLU(),
            zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
        )

        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        # num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
                        layers.append(
                            AttentionBlock(
                                ch,
                                use_checkpoint=use_checkpoint,
                                num_heads=num_heads,
                                num_head_channels=dim_head,
                                use_new_attention_order=use_new_attention_order,
                            ) if not use_spatial_transformer else SpatialTransformer(
                                ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
                                use_checkpoint=use_checkpoint
                            )
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self.zero_convs.append(self.make_zero_conv(ch))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                        )
                        if resblock_updown
                        else Downsample(
                            ch, conv_resample, dims=dims, out_channels=out_ch
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                self.zero_convs.append(self.make_zero_conv(ch))
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            # num_heads = 1
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=dim_head,
                use_new_attention_order=use_new_attention_order,
            ) if not use_spatial_transformer else SpatialTransformer(  # always uses a self-attn
                ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
                disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
                use_checkpoint=use_checkpoint
            ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self.middle_block_out = self.make_zero_conv(ch)
        self._feature_size += ch

    def make_zero_conv(self, channels):
        return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))

    def forward(self, x, hint, timesteps, context, **kwargs):
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
        emb = self.time_embed(t_emb)
        guided_hint = self.input_hint_block(hint, emb, context, x.shape)

        outs = []

        h = x.type(self.dtype)
        for module, zero_conv in zip(self.input_blocks, self.zero_convs):
            if guided_hint is not None:
                h = module(h, emb, context)
                h += guided_hint
                guided_hint = None
            else:
                h = module(h, emb, context)
            outs.append(zero_conv(h, emb, context))

        h = self.middle_block(h, emb, context)
        outs.append(self.middle_block_out(h, emb, context))

        return outs
    
class Interpolate(nn.Module):
    def __init__(self, size, mode):
        super(Interpolate, self).__init__()
        self.interp = torch.nn.functional.interpolate
        self.size = size
        self.mode = mode
        self.factor = 8
        
    def forward(self, x):
        h,w = x.shape[2]//self.factor,  x.shape[3]//self.factor
        x = self.interp(x, size=(h,w), mode=self.mode)
        return x

class ControlNetSAP(ControlNet):
    def __init__(
            self,
            hint_channels,
            model_channels,
            input_hint_block='fixed',
            size = 64,
            mode='nearest',
            *args,
            **kwargs
    ):
        super().__init__( hint_channels=hint_channels, model_channels=model_channels, *args, **kwargs)
        #hint channels are atleast 128 dims
        
        if input_hint_block == 'learnable':
            ch = 2 ** (int(math.log2(hint_channels)))
            self.input_hint_block = TimestepEmbedSequential(
                conv_nd(self.dims, hint_channels, hint_channels, 3, padding=1),
                nn.SiLU(),
                conv_nd(self.dims, hint_channels, 2*ch, 3, padding=1, stride=2),
                nn.SiLU(),
                conv_nd(self.dims, 2*ch, 2*ch, 3, padding=1),
                nn.SiLU(),
                conv_nd(self.dims, 2*ch, 2*ch, 3, padding=1, stride=2),
                nn.SiLU(),
                conv_nd(self.dims, 2*ch, 2*ch, 3, padding=1),
                nn.SiLU(),
                conv_nd(self.dims, 2*ch, model_channels, 3, padding=1, stride=2),
                nn.SiLU(),
                zero_module(conv_nd(self.dims, model_channels, model_channels, 3, padding=1))
            )
        else:
            print("Only interpolation")
            self.input_hint_block = TimestepEmbedSequential(
                                    Interpolate(size, mode), 
                                    zero_module(conv_nd(self.dims, hint_channels, model_channels, 3, padding=1)))


class ControlLDM(LatentDiffusion):

    def __init__(self, control_stage_config, control_key, only_mid_control, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.control_model = instantiate_from_config(control_stage_config)
        self.control_key = control_key
        self.only_mid_control = only_mid_control
        self.control_scales = [1.0] * 13

    @torch.no_grad()
    def get_input(self, batch, k, bs=None, *args, **kwargs):
        x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs)
        control = batch[self.control_key]
        if bs is not None:
            control = control[:bs]
        control = control.to(self.device)
        control = einops.rearrange(control, 'b h w c -> b c h w')
        control = control.to(memory_format=torch.contiguous_format).float()
        return x, dict(c_crossattn=[c], c_concat=[control])

    def apply_model(self, x_noisy, t, cond, *args, **kwargs):
        assert isinstance(cond, dict)
        diffusion_model = self.model.diffusion_model

        cond_txt = torch.cat(cond['c_crossattn'], 1)

        if cond['c_concat'] is None:
            eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control)
        else:
            control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt)
            control = [c * scale for c, scale in zip(control, self.control_scales)]
            eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control)

        return eps

    @torch.no_grad()
    def get_unconditional_conditioning(self, N):
        return self.get_learned_conditioning([""] * N)

    @torch.no_grad()
    def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
                   quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
                   plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
                   use_ema_scope=True,
                   **kwargs):
        use_ddim = ddim_steps is not None

        log = dict()
        z, c = self.get_input(batch, self.first_stage_key, bs=N)
        c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N]
        N = min(z.shape[0], N)
        n_row = min(z.shape[0], n_row)
        log["reconstruction"] = self.decode_first_stage(z)
        log["control"] = c_cat * 2.0 - 1.0
        log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16)

        if plot_diffusion_rows:
            # get diffusion row
            diffusion_row = list()
            z_start = z[:n_row]
            for t in range(self.num_timesteps):
                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
                    t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
                    t = t.to(self.device).long()
                    noise = torch.randn_like(z_start)
                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
                    diffusion_row.append(self.decode_first_stage(z_noisy))

            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
            diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
            diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
            log["diffusion_row"] = diffusion_grid

        if sample:
            # get denoise row
            samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
                                                     batch_size=N, ddim=use_ddim,
                                                     ddim_steps=ddim_steps, eta=ddim_eta)
            x_samples = self.decode_first_stage(samples)
            log["samples"] = x_samples
            if plot_denoise_rows:
                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
                log["denoise_row"] = denoise_grid

        if unconditional_guidance_scale > 1.0:
            uc_cross = self.get_unconditional_conditioning(N)
            uc_cat = c_cat  # torch.zeros_like(c_cat)
            uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
            samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
                                             batch_size=N, ddim=use_ddim,
                                             ddim_steps=ddim_steps, eta=ddim_eta,
                                             unconditional_guidance_scale=unconditional_guidance_scale,
                                             unconditional_conditioning=uc_full,
                                             )
            x_samples_cfg = self.decode_first_stage(samples_cfg)
            log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg

        return log

    @torch.no_grad()
    def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
        ddim_sampler = DDIMSampler(self)
        b, c, h, w = cond["c_concat"][0].shape
        shape = (self.channels, h // 8, w // 8)
        samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs)
        return samples, intermediates

    def configure_optimizers(self):
        lr = self.learning_rate
        params = list(self.control_model.parameters())
        if not self.sd_locked:
            params += list(self.model.diffusion_model.output_blocks.parameters())
            params += list(self.model.diffusion_model.out.parameters())
        opt = torch.optim.AdamW(params, lr=lr)
        return opt

    def low_vram_shift(self, is_diffusing):
        if is_diffusing:
            self.model = self.model.cuda()
            self.control_model = self.control_model.cuda()
            self.first_stage_model = self.first_stage_model.cpu()
            self.cond_stage_model = self.cond_stage_model.cpu()
        else:
            self.model = self.model.cpu()
            self.control_model = self.control_model.cpu()
            self.first_stage_model = self.first_stage_model.cuda()
            self.cond_stage_model = self.cond_stage_model.cuda()


class SAP(ControlLDM):
    @torch.no_grad()
    def __init__(self,control_stage_config, control_key, only_mid_control, *args, **kwargs):
        super().__init__(control_stage_config=control_stage_config, 
                            control_key=control_key, 
                            only_mid_control=only_mid_control, 
                            *args, **kwargs)
        self.appearance_net = VGGPerceptualLoss().to(self.device)
        print("Loaded VGG model")

    def get_appearance(self, img, mask, return_all=False):
        img = (img + 1) * 0.5
        feat = self.appearance_net(img)[0]
        empty_mask_flag = torch.sum(mask, dim=(1,2,3)) == 0
        

        empty_appearance = torch.zeros(feat.shape).to(self.device)
        mask = torch.nn.functional.interpolate(mask.float(), (feat.shape[2:])).long()
        one_hot = torch.nn.functional.one_hot(mask[:,0]).permute(0,3,1,2).float()
            
        feat = torch.einsum('nchw, nmhw->nmchw', feat, one_hot)
        feat = torch.sum(feat, dim=(3,4)) 
        norm = torch.sum(one_hot, dim=(2,3)) + 1e-6 #nm
        mean_feat = feat/norm[:,:,None] #nmc
        mean_feat[:, 0] = torch.zeros(mean_feat[:,0].shape).to(self.device) #set edges in panopitc mask to empty appearance feature

        splatted_feat = torch.einsum('nmc, nmhw->nchw', mean_feat, one_hot)
        splatted_feat[empty_mask_flag] = empty_appearance[empty_mask_flag]
        splatted_feat = torch.nn.functional.normalize(splatted_feat) #l2 normalize on c dim

        if return_all:
            return splatted_feat, mean_feat, one_hot, empty_mask_flag
        
        return splatted_feat
    
    def get_input(self, batch, k, bs=None, *args, **kwargs):
        z, c, x_orig, x_recon = super(ControlLDM, self).get_input(batch, self.first_stage_key, return_first_stage_outputs=True , *args, **kwargs)
        structure = batch['seg'].unsqueeze(1)
        mask =  batch['mask'].unsqueeze(1).to(self.device)
        appearance = self.get_appearance(x_orig, mask)
        if bs is not None:
            structure = structure[:bs]
            appearance = appearance[:bs]

        structure = structure.to(self.device)
        appearance = appearance.to(self.device)
        structure = structure.to(memory_format=torch.contiguous_format).float()
        appearance = appearance.to(memory_format=torch.contiguous_format).float()
        structure = torch.nn.functional.interpolate(structure, x_orig.shape[2:])
        appearance = torch.nn.functional.interpolate(appearance, x_orig.shape[2:])
        control = torch.cat([structure, appearance], dim=1)
        return z, dict(c_crossattn=[c], c_concat=[control])
    
    @torch.no_grad()
    def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
                   quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=False,
                   plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
                   use_ema_scope=True,
                   **kwargs):
        use_ddim = ddim_steps is not None

        log = dict()
        z, c = self.get_input(batch, self.first_stage_key, bs=N)
        c_cat, c = c["c_concat"][0][:N,], c["c_crossattn"][0][:N]
        N = min(z.shape[0], N)
        n_row = min(z.shape[0], n_row)
        log["reconstruction"] = self.decode_first_stage(z)
        log["control"] = c_cat[:, :1]
        log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16)

        if plot_diffusion_rows:
            # get diffusion row
            diffusion_row = list()
            z_start = z[:n_row]
            for t in range(self.num_timesteps):
                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
                    t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
                    t = t.to(self.device).long()
                    noise = torch.randn_like(z_start)
                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
                    diffusion_row.append(self.decode_first_stage(z_noisy))

            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
            diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
            diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
            log["diffusion_row"] = diffusion_grid

        if plot_progressive_rows:
            with self.ema_scope("Plotting Progressives"):
                img, progressives = self.progressive_denoising({"c_concat": [c_cat], "c_crossattn": [c]},
                                                               shape=(self.channels, self.image_size, self.image_size),
                                                               batch_size=N)
            prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
            log["progressive_row"] = prog_row

        if sample:
            # get denoise row
            samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
                                                     batch_size=N, ddim=use_ddim,
                                                     ddim_steps=ddim_steps, eta=ddim_eta)
            x_samples = self.decode_first_stage(samples)
            log["samples"] = x_samples
            if plot_denoise_rows:
                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
                log["denoise_row"] = denoise_grid

        if unconditional_guidance_scale > 1.0:
            uc_cross = self.get_unconditional_conditioning(N)
            uc_cat = c_cat  # torch.zeros_like(c_cat)
            uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
            samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
                                             batch_size=N, ddim=use_ddim,
                                             ddim_steps=ddim_steps, eta=ddim_eta,
                                             unconditional_guidance_scale=unconditional_guidance_scale,
                                             unconditional_conditioning=uc_full,
                                             )
            x_samples_cfg = self.decode_first_stage(samples_cfg)
            log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg

        return log