File size: 3,016 Bytes
2171e8f
0d2dd65
2171e8f
 
 
0d2dd65
2171e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d2dd65
 
2171e8f
 
0d2dd65
2171e8f
 
 
0d2dd65
 
 
2171e8f
 
 
 
 
 
 
 
 
 
0d2dd65
2171e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d2dd65
2171e8f
0d2dd65
2171e8f
 
 
0d2dd65
 
 
 
2171e8f
 
 
 
 
0d2dd65
 
 
 
2171e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
0d2dd65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
model:
  target: cldm.cldm.PAIRDiffusion
  learning_rate: 1.5e-05
  sd_locked: True
  only_mid_control: False
  init_ckpt: './models/pair_diff_init.ckpt'
  params:
    linear_start: 0.00085
    linear_end: 0.0120
    num_timesteps_cond: 1
    log_every_t: 200
    timesteps: 1000
    first_stage_key: "image"
    cond_stage_key: "caption"
    control_key: "hint"
    image_size: 64
    channels: 4
    cond_stage_trainable: false
    conditioning_key: crossattn
    monitor: val/loss_simple_ema
    scale_factor: 0.18215
    use_ema: False
    only_mid_control: False
    appearance_net_locked: True
    app_net: 'DINO'

    control_stage_config:
      target: cldm.controlnet.ControlNetPAIR
      params:
        image_size: 32 # unused
        in_channels: 4 
        concat_indices: [0,1]
        concat_channels: 130
        hint_channels: [1026, 1026, -1, -1] #(1024 + 2)
        model_channels: 320
        attention_resolutions: [ 4, 2, 1 ]
        num_res_blocks: 2
        channel_mult: [ 1, 2, 4, 4 ]
        num_heads: 8
        use_spatial_transformer: True
        transformer_depth: 1
        context_dim: 768
        use_checkpoint: True
        legacy: False
        attn_class: ['maskguided', 'maskguided', 'softmax', 'softmax']

    unet_config:
      target: cldm.cldm.ControlledUnetModel
      params:
        image_size: 32 # unused
        in_channels: 4
        out_channels: 4
        model_channels: 320
        attention_resolutions: [ 4, 2, 1 ]
        num_res_blocks: 2
        channel_mult: [ 1, 2, 4, 4 ]
        num_heads: 8
        use_spatial_transformer: True
        transformer_depth: 1
        context_dim: 768
        use_checkpoint: True
        legacy: False

    first_stage_config:
      target: ldm.models.autoencoder.AutoencoderKL
      params:
        embed_dim: 4
        monitor: val/rec_loss
        ddconfig:
          double_z: true
          z_channels: 4
          resolution: 256
          in_channels: 3
          out_ch: 3
          ch: 128
          ch_mult:
          - 1
          - 2
          - 4
          - 4
          num_res_blocks: 2
          attn_resolutions: []
          dropout: 0.0
        lossconfig:
          target: torch.nn.Identity

    cond_stage_config:
      target: ldm.modules.encoders.modules.FrozenCLIPEmbedder


data:
  target: cldm.data.DataModuleFromConfig
  params:
    batch_size: 2
    wrap: True
    num_workers: 4
    train:
      target: dataset.txtseg.COCOTrain
      params:
        image_dir:
        caption_file:
        panoptic_mask_dir:
        seg_dir:
        size: 512
    validation:
      target: dataset.txtseg.COCOValidation
      params:
        size: 512
        image_dir:
        caption_file:
        panoptic_mask_dir:
        seg_dir:


lightning:
  callbacks:
    image_logger:
      target: main.ImageLogger
      params:
        batch_frequency: 2000
        max_images: 4
        increase_log_steps: False
        log_first_step: True

  trainer:
    benchmark: True
    accumulate_grad_batches: 2