import numpy as np import torch from models.svd.sgm.modules.diffusionmodules.discretizer import Discretization # Implementation of https://arxiv.org/abs/2404.14507 class AlignYourSteps(Discretization): def __init__(self, sigma_min=0.002, sigma_max=80.0, rho=7.0): self.sigma_min = sigma_min self.sigma_max = sigma_max self.rho = rho def loglinear_interp(self, t_steps, num_steps): """ Performs log-linear interpolation of a given array of decreasing numbers. """ xs = np.linspace(0, 1, len(t_steps)) ys = np.log(t_steps[::-1]) new_xs = np.linspace(0, 1, num_steps) new_ys = np.interp(new_xs, xs, ys) interped_ys = np.exp(new_ys)[::-1].copy() return interped_ys def get_sigmas(self, n, device="cpu"): sampling_schedule = [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002] sigmas = torch.from_numpy(self.loglinear_interp( sampling_schedule, n)).to(device) return sigmas