File size: 9,864 Bytes
714bf26
75453c0
 
714bf26
 
 
75453c0
714bf26
 
 
450e8ba
714bf26
 
 
62cb566
714bf26
 
 
 
62cb566
714bf26
 
75453c0
714bf26
 
 
 
 
75453c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714bf26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62cb566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714bf26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75453c0
714bf26
 
 
 
 
 
 
 
 
 
 
a681a6f
75453c0
 
714bf26
 
 
 
 
 
75453c0
 
 
 
 
714bf26
 
 
 
 
 
 
75453c0
 
714bf26
 
 
 
 
 
cbea3f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714bf26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75453c0
 
 
 
 
 
fdceb05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714bf26
 
 
 
 
 
cbea3f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os

import PIL.Image
import numpy as np
import torch
import torchvision
from torchvision.transforms import Resize, InterpolationMode
import imageio
from einops import rearrange
import cv2
from PIL import Image
from annotator.util import resize_image, HWC3
from annotator.canny import CannyDetector
from annotator.openpose import OpenposeDetector
from annotator.midas import MidasDetector
import decord

apply_canny = CannyDetector()
apply_openpose = OpenposeDetector()
apply_midas = MidasDetector()


def add_watermark(image, watermark_path, wm_rel_size=1/16, boundary=5):
    '''
    Creates a watermark on the saved inference image.
    We request that you do not remove this to properly assign credit to
    Shi-Lab's work.
    '''
    watermark = Image.open(watermark_path)
    w_0, h_0 = watermark.size
    H, W, _ = image.shape
    wmsize = int(max(H, W) * wm_rel_size)
    aspect = h_0 / w_0
    if aspect > 1.0:
        watermark = watermark.resize((wmsize, int(aspect * wmsize)), Image.LANCZOS)
    else:
        watermark = watermark.resize((int(wmsize / aspect), wmsize), Image.LANCZOS)
    w, h = watermark.size
    loc_h = H - h - boundary
    loc_w = W - w - boundary
    image = Image.fromarray(image)
    mask = watermark if watermark.mode in ('RGBA', 'LA') else None
    image.paste(watermark, (loc_w, loc_h), mask)
    return image


def pre_process_canny(input_video, low_threshold=100, high_threshold=200):
    detected_maps = []
    for frame in input_video:
        img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8)
        detected_map = apply_canny(img, low_threshold, high_threshold)
        detected_map = HWC3(detected_map)
        detected_maps.append(detected_map[None])
    detected_maps = np.concatenate(detected_maps)
    control = torch.from_numpy(detected_maps.copy()).float() / 255.0
    return rearrange(control, 'f h w c -> f c h w')


def pre_process_depth(input_video, apply_depth_detect: bool = True):
    detected_maps = []
    for frame in input_video:
        img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8)
        img = HWC3(img)
        if apply_depth_detect:
            detected_map, _ = apply_midas(img)
        else:
            detected_map = img
        detected_map = HWC3(detected_map)
        H, W, C = img.shape
        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
        detected_maps.append(detected_map[None])
    detected_maps = np.concatenate(detected_maps)
    control = torch.from_numpy(detected_maps.copy()).float() / 255.0
    return rearrange(control, 'f h w c -> f c h w')


def pre_process_pose(input_video, apply_pose_detect: bool = True):
    detected_maps = []
    for frame in input_video:
        img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8)
        img = HWC3(img)
        if apply_pose_detect:
            detected_map, _ = apply_openpose(img)
        else:
            detected_map = img
        detected_map = HWC3(detected_map)
        H, W, C = img.shape
        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
        detected_maps.append(detected_map[None])
    detected_maps = np.concatenate(detected_maps)
    control = torch.from_numpy(detected_maps.copy()).float() / 255.0
    return rearrange(control, 'f h w c -> f c h w')


def create_video(frames, fps, rescale=False, path=None, watermark=None):
    if path is None:
        dir = "temporal"
        os.makedirs(dir, exist_ok=True)
        path = os.path.join(dir, 'movie.mp4')

    outputs = []
    for i, x in enumerate(frames):
        x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)

        if watermark is not None:
            x = add_watermark(x, watermark)
        outputs.append(x)
        # imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x)

    imageio.mimsave(path, outputs, fps=fps)
    return path

def create_gif(frames, fps, rescale=False, path=None, watermark=None):
    if path is None:
        dir = "temporal"
        os.makedirs(dir, exist_ok=True)
        path = os.path.join(dir, 'canny_db.gif')

    outputs = []
    for i, x in enumerate(frames):
        x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        if watermark is not None:
            x = add_watermark(x, watermark)
        outputs.append(x)
        # imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x)

    imageio.mimsave(path, outputs, fps=fps)
    return path

# def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1):
#     vr = decord.VideoReader(video_path)
#     video = vr.get_batch(range(0, len(vr))).asnumpy()
#     initial_fps = vr.get_avg_fps()
#     if output_fps == -1:
#         output_fps = int(initial_fps)
#     if end_t == -1:
#         end_t = len(vr) / initial_fps
#     else:
#         end_t = min(len(vr) / initial_fps, end_t)
#     assert 0 <= start_t < end_t
#     assert output_fps > 0
#     f, h, w, c = video.shape
#     start_f_ind = int(start_t * initial_fps)
#     end_f_ind = int(end_t * initial_fps)
#     num_f = int((end_t - start_t) * output_fps)
#     sample_idx = np.linspace(start_f_ind, end_f_ind, num_f, endpoint=False).astype(int)
#     video = video[sample_idx]
#     video = rearrange(video, "f h w c -> f c h w")
#     video = torch.Tensor(video).to(device).to(dtype)
#     if h > w:
#         w = int(w * resolution / h)
#         w = w - w % 8
#         h = resolution - resolution % 8
#         video = Resize((h, w))(video)
#     else:
#         h = int(h * resolution / w)
#         h = h - h % 8
#         w = resolution - resolution % 8
#         video = Resize((h, w))(video)
#     if normalize:
#         video = video / 127.5 - 1.0
#     return video, output_fps

def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1):
    vr = decord.VideoReader(video_path)
    initial_fps = vr.get_avg_fps()
    if output_fps == -1:
        output_fps = int(initial_fps)
    if end_t == -1:
        end_t = len(vr) / initial_fps
    else:
        end_t = min(len(vr) / initial_fps, end_t)
    assert 0 <= start_t < end_t
    assert output_fps > 0
    start_f_ind = int(start_t * initial_fps)
    end_f_ind = int(end_t * initial_fps)
    num_f = int((end_t - start_t) * output_fps)
    sample_idx = np.linspace(start_f_ind, end_f_ind, num_f, endpoint=False).astype(int)
    video = vr.get_batch(sample_idx)
    if torch.is_tensor(video):
        video = video.detach().cpu().numpy()
    else:
        video = video.asnumpy()
    _, h, w, _ = video.shape

    video_resized = []
    for f in range(video.shape[0]):
        frame = video[f:f+1, ...]

        frame = rearrange(frame, "f h w c -> f c h w")
        frame = torch.Tensor(frame).to(device).to(dtype)

        # Use max if you want the larger side to be equal to resolution (e.g. 512)
        # k = float(resolution) / min(h, w)
        k = float(resolution) / max(h, w)
        h *= k
        w *= k
        h = int(np.round(h / 64.0)) * 64
        w = int(np.round(w / 64.0)) * 64

        frame = Resize((h, w), interpolation=InterpolationMode.BILINEAR, antialias=True)(frame)
        if normalize:
            frame = frame / 127.5 - 1.0
        video_resized.append(frame)
    video = torch.cat(video_resized)

    return video, output_fps

def post_process_gif(list_of_results, image_resolution):
    output_file = "/tmp/ddxk.gif"
    imageio.mimsave(output_file, list_of_results, fps=4)
    return output_file


class CrossFrameAttnProcessor:
    def __init__(self, unet_chunk_size=2):
        self.unet_chunk_size = unet_chunk_size

    def __call__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None):
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        query = attn.to_q(hidden_states)

        is_cross_attention = encoder_hidden_states is not None
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.cross_attention_norm:
            encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        # Sparse Attention
        if not is_cross_attention:
            video_length = key.size()[0] // self.unet_chunk_size
            # former_frame_index = torch.arange(video_length) - 1
            # former_frame_index[0] = 0
            former_frame_index = [0] * video_length
            key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
            key = key[:, former_frame_index]
            key = rearrange(key, "b f d c -> (b f) d c")
            value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
            value = value[:, former_frame_index]
            value = rearrange(value, "b f d c -> (b f) d c")

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states