import gradio as gr
from model import Model
from functools import partial
from bs4 import BeautifulSoup
import requests
examples = [
["an astronaut waving the arm on the moon"],
["a sloth surfing on a wakeboard"],
["an astronaut walking on a street"],
["a cute cat walking on grass"],
["a horse is galloping on a street"],
["an astronaut is skiing down the hill"],
["a gorilla walking alone down the street"],
["a gorilla dancing on times square"],
["A panda dancing dancing like crazy on Times Square"],
]
def model_url_list():
url_list = []
for i in range(0, 5):
url_list.append(f"https://huggingface.co/models?p={i}&sort=downloads&search=dreambooth")
return url_list
def data_scraping(url_list):
model_list = []
for url in url_list:
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
div_class = 'grid grid-cols-1 gap-5 2xl:grid-cols-2'
div = soup.find('div', {'class': div_class})
for a in div.find_all('a', href=True):
model_list.append(a['href'])
return model_list
model_list = data_scraping(model_url_list())
for i in range(len(model_list)):
model_list[i] = model_list[i][1:]
best_model_list = [
"dreamlike-art/dreamlike-photoreal-2.0",
"dreamlike-art/dreamlike-diffusion-1.0",
"runwayml/stable-diffusion-v1-5",
"CompVis/stable-diffusion-v1-4",
"prompthero/openjourney",
]
model_list = best_model_list + model_list
def create_demo(model: Model):
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown('## Text2Video-Zero: Video Generation')
with gr.Row():
gr.HTML(
"""
Description: Simply input any textual prompt to generate videos right away and unleash your creativity and imagination! You can also select from the examples below. For performance purposes, our current preview release by default generates only 8 output frames and output 4s videos, but you can increase it from Advanced Options.
""")
with gr.Row():
with gr.Column():
model_name = gr.Dropdown(
label="Model",
choices=model_list,
value="dreamlike-art/dreamlike-photoreal-2.0",
)
prompt = gr.Textbox(label='Prompt')
run_button = gr.Button(label='Run')
with gr.Accordion('Advanced options', open=False):
watermark = gr.Radio(["Picsart AI Research", "Text2Video-Zero", "None"], label="Watermark", value='Picsart AI Research')
video_length = gr.Number(label="Video length", value=8, min=2, precision=0)
chunk_size = gr.Slider(label="Chunk size", minimum=2, maximum=32, value=8, step=1)
motion_field_strength_x = gr.Slider(label='Global Translation $\delta_{x}$', minimum=-20, maximum=20, value=12, step=1)
motion_field_strength_y = gr.Slider(label='Global Translation $\delta_{y}$', minimum=-20, maximum=20, value=12, step=1)
t0 = gr.Slider(label="Timestep t0", minimum=0, maximum=49, value=44, step=1)
t1 = gr.Slider(label="Timestep t1", minimum=0, maximum=49, value=47, step=1)
n_prompt = gr.Textbox(label="Optional Negative Prompt", value='')
with gr.Column():
result = gr.Video(label="Generated Video")
inputs = [
prompt,
model_name,
motion_field_strength_x,
motion_field_strength_y,
t0,
t1,
n_prompt,
chunk_size,
video_length,
watermark,
]
gr.Examples(examples=examples,
inputs=inputs,
outputs=result,
fn=model.process_text2video,
cache_examples=True,
run_on_click=False,
)
run_button.click(fn=model.process_text2video,
inputs=inputs,
outputs=result,)
return demo