from logging import warning import torch import torch.nn as nn import numpy as np from tqdm import tqdm import spacy from sklearn.metrics.pairwise import cosine_similarity from nltk.tokenize import sent_tokenize import json class CTCScorer(): def __init__(self, model_type) -> None: self.model_type = model_type import nltk nltk.download('stopwords') from ctc_score import StyleTransferScorer, SummarizationScorer, DialogScorer if model_type == 'D-cnndm': self.scorer = SummarizationScorer(align='D-cnndm') elif model_type =='E-roberta': self.scorer = SummarizationScorer(align='E-roberta') elif model_type == 'R-cnndm': self.scorer = SummarizationScorer(align='R-cnndm') def score(self, premise: list, hypo: list): assert len(premise) == len(hypo), "Premise and hypothesis should have the same length" output_scores = [] for one_pre, one_hypo in tqdm(zip(premise, hypo), total=len(premise), desc="Evaluating by ctc"): score_for_this_example = self.scorer.score(doc=one_pre, refs=[], hypo=one_hypo, aspect='consistency') if score_for_this_example is not None: output_scores.append(score_for_this_example) else: output_scores.append(1e-8) output = None, torch.tensor(output_scores), None return output class SimCSEScorer(): def __init__(self, model_type, device) -> None: self.model_type = model_type self.device = device from transformers import AutoModel, AutoTokenizer # refer to the model list on https://github.com/princeton-nlp/SimCSE for the list of models self.tokenizer = AutoTokenizer.from_pretrained(model_type) self.model = AutoModel.from_pretrained(model_type).to(self.device) self.spacy = spacy.load('en_core_web_sm') self.batch_size = 64 def score(self, premise: list, hypo: list): assert len(premise) == len(hypo) output_scores = [] premise_sents = [] premise_index = [0] hypo_sents = [] hypo_index = [0] for one_pre, one_hypo in tqdm(zip(premise, hypo), desc="Sentenizing", total=len(premise)): premise_sent = sent_tokenize(one_pre) #[each.text for each in self.spacy(one_pre).sents] hypo_sent = sent_tokenize(one_hypo) #[each.text for each in self.spacy(one_hypo).sents] premise_sents.extend(premise_sent) premise_index.append(len(premise_sents)) hypo_sents.extend(hypo_sent) hypo_index.append(len(hypo_sents)) all_sents = premise_sents + hypo_sents embeddings = [] with torch.no_grad(): for batch in tqdm(self.chunks(all_sents, self.batch_size), total=int(len(all_sents)/self.batch_size), desc="Evaluating by SimCSE"): inputs = self.tokenizer(batch, padding=True, truncation=True, return_tensors="pt").to(self.device) embeddings.append(self.model(**inputs, output_hidden_states=True, return_dict=True).pooler_output) embeddings = torch.cat(embeddings) assert len(premise_index) == len(hypo_index) for i in range(len(premise_index)-1): premise_embeddings = embeddings[premise_index[i]: premise_index[i+1]] hypo_embeddings = embeddings[len(premise_sents)+hypo_index[i]:len(premise_sents)+hypo_index[i+1]] cos_sim = cosine_similarity(premise_embeddings.cpu(), hypo_embeddings.cpu()) score_p = cos_sim.max(axis=0).mean() score_r = cos_sim.max(axis=1).mean() score_f = 2 * score_p * score_r / (score_p + score_r) output_scores.append(score_f) return torch.Tensor(output_scores), torch.Tensor(output_scores), None def chunks(self, lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] class BleurtScorer(): def __init__(self, checkpoint) -> None: self.checkpoint = checkpoint from bleurt import score # BLEURT-20 can also be switched to other checkpoints to improve time # No avaliable api to specify cuda number self.model = score.BleurtScorer(self.checkpoint) def scorer(self, premise:list, hypo: list): assert len(premise) == len(hypo) output_scores = self.model.score(references=premise, candidates=hypo, batch_size=8) output_scores = [s for s in output_scores] return torch.Tensor(output_scores), torch.Tensor(output_scores), torch.Tensor(output_scores) class BertScoreScorer(): def __init__(self, model_type, metric, device, batch_size) -> None: self.model_type = model_type self.device = device self.metric = metric self.batch_size = batch_size from bert_score import score self.model = score def scorer(self, premise: list, hypo: list): assert len(premise) == len(hypo) precision, recall, f1 = self.model(premise, hypo, model_type=self.model_type, lang='en', rescale_with_baseline=True, verbose=True, device=self.device, batch_size=self.batch_size) f1 = [f for f in f1] precision = [p for p in precision] recall = [r for r in recall] if self.metric == 'f1': return torch.Tensor(f1), torch.Tensor(f1), None elif self.metric == 'precision': return torch.Tensor(precision), torch.Tensor(precision), None elif self.metric == 'recall': return torch.Tensor(recall), torch.Tensor(recall), None else: ValueError("metric type not in f1, precision or recall.") class BartScoreScorer(): def __init__(self, checkpoint, device) -> None: self.checkpoint = checkpoint self.device = device import os, sys sys.path.append('baselines/BARTScore') from bart_score import BARTScorer self.model = BARTScorer(device=self.device, checkpoint=self.checkpoint) def scorer(self, premise: list, hypo: list): assert len(premise) == len(hypo) output_scores = self.model.score(premise, hypo, batch_size=4) normed_score = torch.exp(torch.Tensor(output_scores)) return normed_score, normed_score, normed_score ### Below are baselines in SummaC ### MNLI, NER, FactCC, DAE, FEQA, QuestEval, SummaC-ZS, SummaC-Conv class MNLIScorer(): def __init__(self, model="roberta-large-mnli", device='cuda:0', batch_size=32) -> None: from transformers import AutoTokenizer, AutoModelForSequenceClassification self.tokenizer = AutoTokenizer.from_pretrained(model) self.model = AutoModelForSequenceClassification.from_pretrained(model).to(device) self.device = device self.softmax = nn.Softmax(dim=-1) self.batch_size = batch_size def scorer(self, premise: list, hypo: list): if isinstance(premise, str) and isinstance(hypo, str): premise = [premise] hypo = [hypo] batch = self.batch_tokenize(premise, hypo) output_score_tri = [] for mini_batch in tqdm(batch, desc="Evaluating MNLI"): # for mini_batch in batch: mini_batch = mini_batch.to(self.device) with torch.no_grad(): model_output = self.model(**mini_batch) model_output_tri = model_output.logits model_output_tri = self.softmax(model_output_tri).cpu() output_score_tri.append(model_output_tri[:,2]) output_score_tri = torch.cat(output_score_tri) return output_score_tri, output_score_tri, output_score_tri def batch_tokenize(self, premise, hypo): """ input premise and hypos are lists """ assert isinstance(premise, list) and isinstance(hypo, list) assert len(premise) == len(hypo), "premise and hypo should be in the same length." batch = [] for mini_batch_pre, mini_batch_hypo in zip(self.chunks(premise, self.batch_size), self.chunks(hypo, self.batch_size)): try: mini_batch = self.tokenizer(mini_batch_pre, mini_batch_hypo, truncation='only_first', padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt') except: warning('text_b too long...') mini_batch = self.tokenizer(mini_batch_pre, mini_batch_hypo, truncation=True, padding='max_length', max_length=self.tokenizer.model_max_length, return_tensors='pt') batch.append(mini_batch) return batch def chunks(self, lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] class NERScorer(): def __init__(self) -> None: import os, sys sys.path.append('baselines/summac/summac') from model_guardrails import NERInaccuracyPenalty self.ner = NERInaccuracyPenalty() def scorer(self, premise, hypo): score_return = self.ner.score(premise, hypo)['scores'] oppo_score = [float(not each) for each in score_return] tensor_score = torch.tensor(oppo_score) return tensor_score, tensor_score, tensor_score class UniEvalScorer(): def __init__(self, task='fact', device='cuda:0') -> None: import os, sys sys.path.append('baselines/UniEval') from metric.evaluator import get_evaluator self.evaluator = get_evaluator(task, device=device) def scorer(self, premise, hypo): from utils import convert_to_json # Prepare data for pre-trained evaluators data = convert_to_json(output_list=hypo, src_list=premise) # Initialize evaluator for a specific task # Get factual consistency scores eval_scores = self.evaluator.evaluate(data, print_result=True) score_list = [each['consistency'] for each in eval_scores] return torch.tensor(score_list), torch.tensor(score_list), torch.tensor(score_list) class FEQAScorer(): def __init__(self) -> None: import os, sys sys.path.append('baselines/feqa') import benepar import nltk benepar.download('benepar_en3') nltk.download('stopwords') from feqa import FEQA self.feqa_model = FEQA(squad_dir=os.path.abspath('baselines/feqa/qa_models/squad1.0'), bart_qa_dir=os.path.abspath('baselines/feqa/bart_qg/checkpoints/'), use_gpu=True) def scorer(self, premise, hypo): eval_score = self.feqa_model.compute_score(premise, hypo, aggregate=False) return torch.tensor(eval_score), torch.tensor(eval_score), torch.tensor(eval_score) class QuestEvalScorer(): def __init__(self) -> None: import os, sys sys.path.append('baselines/QuestEval') from questeval.questeval_metric import QuestEval self.questeval = QuestEval(no_cuda=False) def scorer(self, premise, hypo): score = self.questeval.corpus_questeval( hypothesis=hypo, sources=premise ) final_score = score['ex_level_scores'] return torch.tensor(final_score), torch.tensor(final_score), torch.tensor(final_score) class QAFactEvalScorer(): def __init__(self, model_folder, device='cuda:0') -> None: import os, sys sys.path.append('baselines/QAFactEval') sys.path.append(os.path.abspath('baselines/qaeval/')) from qafacteval import QAFactEval kwargs = {"cuda_device": int(device.split(':')[-1]), "use_lerc_quip": True, \ "verbose": True, "generation_batch_size": 32, \ "answering_batch_size": 32, "lerc_batch_size": 8} self.metric = QAFactEval( lerc_quip_path=f"{model_folder}/quip-512-mocha", generation_model_path=f"{model_folder}/generation/model.tar.gz", answering_model_dir=f"{model_folder}/answering", lerc_model_path=f"{model_folder}/lerc/model.tar.gz", lerc_pretrained_model_path=f"{model_folder}/lerc/pretraining.tar.gz", **kwargs ) def scorer(self, premise, hypo): results = self.metric.score_batch_qafacteval(premise, [[each] for each in hypo], return_qa_pairs=True) score = [result[0]['qa-eval']['lerc_quip'] for result in results] return torch.tensor(score), torch.tensor(score), torch.tensor(score) class MoverScorer(): def __init__(self) -> None: pass class BERTScoreFFCIScorer(): def __init__(self) -> None: pass class DAEScorer(): def __init__(self, model_dir, device=0) -> None: import os, sys sys.path.insert(0, "baselines/factuality-datasets/") from evaluate_generated_outputs import daefact self.dae = daefact(model_dir, model_type='electra_dae', gpu_device=device) def scorer(self, premise, hypo): return_score = torch.tensor(self.dae.score_multi_doc(premise, hypo)) return return_score, return_score, return_score class SummaCScorer(): def __init__(self, summac_type='conv', device='cuda:0') -> None: self.summac_type = summac_type import os, sys sys.path.append("baselines/summac") from summac.model_summac import SummaCZS, SummaCConv if summac_type == 'conv': self.model = SummaCConv(models=["vitc"], bins='percentile', granularity="sentence", nli_labels="e", device=device, start_file="default", agg="mean") elif summac_type == 'zs': self.model = SummaCZS(granularity="sentence", model_name="vitc", device=device) # If you have a GPU: switch to: device="cuda" def scorer(self, premise, hypo): assert len(premise) == len(hypo) scores = self.model.score(premise, hypo)['scores'] return_score = torch.tensor(scores) return return_score, return_score, return_score class FactCCScorer(): def __init__(self, script_path, test_data_path,result_path) -> None: self.script_path = script_path self.result_path = result_path self.test_data_path = test_data_path def scorer(self, premise, hypo): import subprocess import pickle self.generate_json_file(premise, hypo) subprocess.call(f"sh {self.script_path}", shell=True) print("Finishing FactCC") results = pickle.load(open(self.result_path, 'rb')) results = [-each+1 for each in results] return torch.tensor(results), torch.tensor(results), torch.tensor(results) def generate_json_file(self, premise, hypo): output = [] assert len(premise) == len(hypo) i = 0 for one_premise, one_hypo in zip(premise, hypo): example = dict() example['id'] = i example['text'] = one_premise example['claim'] = one_hypo example['label'] = 'CORRECT' i += 1 output.append(example) with open(self.test_data_path, 'w', encoding='utf8') as f: for each in output: json.dump(each, f, ensure_ascii=False) f.write('\n') class BLANCScorer(): def __init__(self, device='cuda', batch_size=64) -> None: from blanc import BlancHelp, BlancTune self.blanc_help = BlancHelp(device=device, inference_batch_size=batch_size) def scorer(self, premise, hypo): score = self.blanc_help.eval_pairs(premise, hypo) return_score = torch.tensor(score) return return_score, return_score, return_score class BLEUScorer(): def __init__(self, n_grams=1) -> None: self.n_grams = n_grams self.n_gram_map = { 1: (1,0,0,0), 2: (0.5,0.5,0,0), 3: (1./3,1./3,1./3,0), 4: (0.25,0.25,0.25,0.25) } def scorer(self, premise, hypo): from nltk.translate.bleu_score import sentence_bleu assert len(premise) == len(hypo), "premise and hypothesis should be the same length!" output_score = [] for one_pre, one_hypo in tqdm(zip(premise, hypo), desc=f"Evaluating BLEU-{self.n_grams}", total=len(premise)): scores = [] pre_sents = sent_tokenize(one_pre) references = [[each for each in sent.split()] for sent in pre_sents] for hypo_sent in sent_tokenize(one_hypo): hypothesis = [each for each in hypo_sent.split()] scores.append(sentence_bleu(references=references, hypothesis=hypothesis, weights=self.n_gram_map[self.n_grams])) output_score.append(sum(scores)/len(scores) if len(scores)>0 else 0.) return torch.tensor(output_score), torch.tensor(output_score), torch.tensor(output_score) class ROUGEScorer(): def __init__(self, rouge_type='1') -> None: from rouge import Rouge self.rouge = Rouge() self.rouge_type = rouge_type def scorer(self, premise, hypo): assert len(premise) == len(hypo), "premise and hypothesis should be the same length!" output_score = [] for one_pre, one_hypo in tqdm(zip(premise, hypo), desc=f"Evaluating ROUGE-{self.rouge_type}", total=len(premise)): scores = [] for pre_sent in sent_tokenize(one_pre): for hypo_sent in sent_tokenize(one_hypo): try: scores.append(self.rouge.get_scores(pre_sent, hypo_sent)[0][f"rouge-{self.rouge_type}"]['f']) except: if len(pre_sent.strip()) == 0: print('premise sent is empty') elif len(hypo_sent.strip()) == 0: print('hypo sent is empty') scores.append(0.0) scores = np.array(scores) scores = scores.reshape((len(sent_tokenize(one_pre)), len(sent_tokenize(one_hypo)))) scores = scores.max(axis=0).mean() output_score.append(scores.item()) return torch.tensor(output_score), torch.tensor(output_score), torch.tensor(output_score) class GPTScoreScorer(): def __init__(self, api_key, gpt_model='davinci003') -> None: import os, sys sys.path.append('../BaselineForNLGEval/GPTScore') from gpt3_score import gpt3score self.gpt3score = gpt3score self.api_key = api_key self.gpt_model = gpt_model self.consistency_prefix = "Generate factually consistent summary for the following text: " self.consistency_suffix = " \n\nTl;dr " def scorer(self, premise: list, hypothesis: list): assert len(premise) == len(hypothesis) output_score = [] for p, h in tqdm(zip(premise, hypothesis), total=len(premise), desc="Evaluating GPTScore"): score = self.gpt3score(input=self.consistency_prefix + p + self.consistency_suffix, output=h, gpt3model=self.gpt_model, api_key=self.api_key) output_score.append(score) output_score = torch.tensor(output_score) return None, output_score, None class ChatGPTLuo2023Scorer(): def __init__(self, task, api_key, chat_model='gpt-3.5-turbo') -> None: openai.api_key = api_key assert isinstance(task, list) and len(task) == 1 self.task = task[0] self.chat_model = chat_model self.instruct = """Score the following summary given the corresponding article with respect to consistency from 1 to 10. Note that consistency measures how much information included in the summary is present in the source article. 10 points indicate the summary contains only statements that are entailed by the source document.""" def scorer(self, premise: list, hypothesis: list): import time assert len(premise) == len(hypothesis) output_score = [] i = -1 for p, h in tqdm(zip(premise, hypothesis), total=len(premise), desc="Evaluating ChatGPTLuo2023"): i += 1 if i <= -1: continue attempt = 0 max_attempt = 5 while attempt < max_attempt: try: response = openai.ChatCompletion.create( model=self.chat_model, messages=[ # {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": f"""Score the following summary given the corresponding article with respect to consistency from 1 to 10. Note that consistency measures how much information included in the summary is present in the source article. 10 points indicate the summary contains only statements that are entailed by the source document. Summary: {h} Article: {p} """}, ], temperature=0, max_tokens=10 ) res_content = response['choices'][0]['message']['content'] break except: attempt += 1 print("openai api failed") if max_attempt == attempt: print("maximum failed attempts reached. exiting...") exit() json.dump({i: res_content}, open(f'exp_results/nlg_eval_fact/baselines/ChatGPTLuo2023-output/{self.task}.json', 'a')) with open(f'exp_results/nlg_eval_fact/baselines/ChatGPTLuo2023-output/{self.task}.json', 'a') as f: f.write('\n') try: score = int(res_content) except: print("unknown score") score = 0.0 output_score.append(score) # time.sleep(1) output_score = torch.tensor(output_score) return None, output_score, None class ChatGPTGao2023Scorer(): def __init__(self, task, api_key, chat_model='gpt-3.5-turbo') -> None: openai.api_key = api_key assert isinstance(task, list) and len(task) == 1 self.task = task[0] self.chat_model = chat_model def scorer(self, premise: list, hypothesis: list): import time assert len(premise) == len(hypothesis) output_score = [] i = -1 for p, h in tqdm(zip(premise, hypothesis), total=len(premise), desc="Evaluating ChatGPTGao2023"): i += 1 if i <= -1: continue attempt = 0 max_attempt = 5 while attempt < max_attempt: try: response = openai.ChatCompletion.create( model=self.chat_model, messages=[ # {"role": "system", "content": "You are a human annotator that rates the quality of summaries"}, # {"role": "user", "content": f"""Imagine you are a human annotator now. You will evaluate the quality of summaries written for a news article. Please follow these steps:\n\n 1. Carefully read the news article, and be aware of the information it contains.\n 2. Read the proposed summary.\n 3. Rate the summary on four dimensions: relevance, consistency, fluency, and coherence. You should rate on a scale from 1 (worst) to 5 (best).\n\n Definitions are as follows:\n Relevance: The rating measures how well the summary captures the key points of the article. Consider whether all and only the important aspects are contained in the summary.\n Consistency: The rating measures whether the facts in the summary are consistent with the facts in the original article. Consider whether the summary does reproduce all facts accurately and does not make up untrue information.\n Fluency: This rating measures the quality of individual sentences, whether they are well-written and grammatically correct. Consider the quality of individual sentences.\n Coherence: The rating measures the quality of all sentences collectively, to fit together and sound natural. Consider the quality of the summary as a whole.\n\n The article and the summary are given below:\n Article: {p}\n Summary: {h}"""}, {"role": "user", "content": f"""Evaluate the quality of summaries written for a news article. Rate each summary on four dimensions: relevance, faithfulness, fluency, and coherence. You should rate on a scale from 1 (worst) to 5 (best).\n\n Article: {p}\n Summary: {h}"""}, ], temperature=0, # max_tokens=10 ) res_content = response['choices'][0]['message']['content'] break except: attempt += 1 print("openai api failed") if max_attempt == attempt: print("maximum failed attempts reached. exiting...") exit() json.dump({i: res_content}, open(f'exp_results/nlg_eval_fact/baselines/ChatGPTGao2023-output/{self.task}.json', 'a')) with open(f'exp_results/nlg_eval_fact/baselines/ChatGPTGao2023-output/{self.task}.json', 'a') as f: f.write('\n') try: score = int(res_content) except: print("unknown score") score = 0.0 output_score.append(score) # time.sleep(1) output_score = torch.tensor(output_score) return None, output_score, None class ChatGPTYiChen2023Scorer(): def __init__(self, task, api_key, chat_model='gpt-3.5-turbo') -> None: ### Explicit score by ChatGPT openai.api_key = api_key assert isinstance(task, list) and len(task) == 1 self.task = task[0] self.chat_model = chat_model def scorer(self, premise: list, hypothesis: list): import time assert len(premise) == len(hypothesis) output_score = [] i = -1 for p, h in tqdm(zip(premise, hypothesis), total=len(premise), desc="Evaluating ChatGPTYiChen2023"): i += 1 if i <= -1: continue attempt = 0 max_attempt = 5 while attempt < max_attempt: try: response = openai.ChatCompletion.create( model=self.chat_model, messages=[ # {"role": "system", "content": "You are a human annotator that rates the quality of summaries"}, # {"role": "user", "content": f"""Imagine you are a human annotator now. You will evaluate the quality of summaries written for a news article. Please follow these steps:\n\n 1. Carefully read the news article, and be aware of the information it contains.\n 2. Read the proposed summary.\n 3. Rate the summary on four dimensions: relevance, consistency, fluency, and coherence. You should rate on a scale from 1 (worst) to 5 (best).\n\n Definitions are as follows:\n Relevance: The rating measures how well the summary captures the key points of the article. Consider whether all and only the important aspects are contained in the summary.\n Consistency: The rating measures whether the facts in the summary are consistent with the facts in the original article. Consider whether the summary does reproduce all facts accurately and does not make up untrue information.\n Fluency: This rating measures the quality of individual sentences, whether they are well-written and grammatically correct. Consider the quality of individual sentences.\n Coherence: The rating measures the quality of all sentences collectively, to fit together and sound natural. Consider the quality of the summary as a whole.\n\n The article and the summary are given below:\n Article: {p}\n Summary: {h}"""}, {"role": "user", "content": f"""Score the following storyline given the beginning of the story on a continual scale from 0 (worst) to 100 (best), where score of 0 means "The storyline makes no sense and is totally not understandable" and score of 100 means "The storyline is perfect-written and highly consistent with the given beginning of the story". \n\n The beginning of the story: {p} \n\n Storyline: {h} \n\n Score: """}, ], temperature=0, # max_tokens=10 ) res_content = response['choices'][0]['message']['content'] break except: attempt += 1 print("openai api failed") if max_attempt == attempt: print("maximum failed attempts reached. exiting...") exit() json.dump({i: res_content}, open(f'exp_results/nlg_eval_fact/baselines/ChatGPTYiChen2023-output/{self.task}.json', 'a')) with open(f'exp_results/nlg_eval_fact/baselines/ChatGPTYiChen2023-output/{self.task}.json', 'a') as f: f.write('\n') try: score = int(res_content) except: print("unknown score") score = 0.0 output_score.append(score) # time.sleep(1) output_score = torch.tensor(output_score) return None, output_score, None class ChatGPTShiqiChen2023Scorer(): def __init__(self, task, api_key, chat_model='gpt-3.5-turbo') -> None: ### Explicit score by ChatGPT openai.api_key = api_key assert isinstance(task, list) and len(task) == 1 self.task = task[0] self.chat_model = chat_model def scorer(self, premise: list, hypothesis: list): import time assert len(premise) == len(hypothesis) output_score = [] i = -1 for p, h in tqdm(zip(premise, hypothesis), total=len(premise), desc="Evaluating ChatGPTShiqiChen2023"): i += 1 if i <= -1: continue hypo_sents = sent_tokenize(h) hypo_sents = ' \n '.join([f"{i+1}. "+each for i, each in enumerate(hypo_sents)]) attempt = 0 max_attempt = 5 while attempt < max_attempt: try: response = openai.ChatCompletion.create( model=self.chat_model, messages=[ # {"role": "system", "content": "You are a human annotator that rates the quality of summaries"}, # {"role": "user", "content": f"""Imagine you are a human annotator now. You will evaluate the quality of summaries written for a news article. Please follow these steps:\n\n 1. Carefully read the news article, and be aware of the information it contains.\n 2. Read the proposed summary.\n 3. Rate the summary on four dimensions: relevance, consistency, fluency, and coherence. You should rate on a scale from 1 (worst) to 5 (best).\n\n Definitions are as follows:\n Relevance: The rating measures how well the summary captures the key points of the article. Consider whether all and only the important aspects are contained in the summary.\n Consistency: The rating measures whether the facts in the summary are consistent with the facts in the original article. Consider whether the summary does reproduce all facts accurately and does not make up untrue information.\n Fluency: This rating measures the quality of individual sentences, whether they are well-written and grammatically correct. Consider the quality of individual sentences.\n Coherence: The rating measures the quality of all sentences collectively, to fit together and sound natural. Consider the quality of the summary as a whole.\n\n The article and the summary are given below:\n Article: {p}\n Summary: {h}"""}, {"role": "user", "content": f"""Source Document: \n {p} \n\n Q: Can the following statement be inferred from the above document? Yes or No?\n {hypo_sents} \n A: 1. """}, ], temperature=0, # max_tokens=10 ) res_content = response['choices'][0]['message']['content'] break except: attempt += 1 print("openai api failed") if max_attempt == attempt: print("maximum failed attempts reached. exiting...") exit() json.dump({i: res_content}, open(f'exp_results/nlg_eval_fact/baselines/ChatGPTShiqiChen2023-output/{self.task}.json', 'a')) with open(f'exp_results/nlg_eval_fact/baselines/ChatGPTShiqiChen2023-output/{self.task}.json', 'a') as f: f.write('\n') try: score = int(res_content) except: print("unknown score") score = 0.0 output_score.append(score) # time.sleep(1) output_score = torch.tensor(output_score) return None, output_score, None