edwin200311 commited on
Commit
64c746e
1 Parent(s): d67972f
Files changed (1) hide show
  1. app.py +2 -9
app.py CHANGED
@@ -7,8 +7,6 @@ from PIL import Image
7
  import tensorflow as tf
8
  from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
 
10
-
11
-
12
  feature_extractor = SegformerFeatureExtractor.from_pretrained(
13
  "mattmdjaga/segformer_b2_clothes"
14
  )
@@ -16,7 +14,6 @@ model = TFSegformerForSemanticSegmentation.from_pretrained(
16
  "mattmdjaga/segformer_b2_clothes"
17
  )
18
 
19
-
20
  def ade_palette():
21
  """ADE20K palette that maps each class to RGB values."""
22
  return [
@@ -40,7 +37,6 @@ def ade_palette():
40
  [67, 57, 91],
41
  ]
42
 
43
-
44
  labels_list = []
45
 
46
  with open(r'labels.txt', 'r') as fp:
@@ -49,7 +45,6 @@ with open(r'labels.txt', 'r') as fp:
49
 
50
  colormap = np.asarray(ade_palette())
51
 
52
-
53
  def label_to_color_image(label):
54
  if label.ndim != 2:
55
  raise ValueError("Expect 2-D input label")
@@ -58,7 +53,6 @@ def label_to_color_image(label):
58
  raise ValueError("label value too large.")
59
  return colormap[label]
60
 
61
-
62
  def draw_plot(pred_img, seg):
63
  fig = plt.figure(figsize=(20, 15))
64
 
@@ -80,7 +74,6 @@ def draw_plot(pred_img, seg):
80
  ax.tick_params(width=0.0, labelsize=25)
81
  return fig
82
 
83
-
84
  def sepia(input_img):
85
  input_img = Image.fromarray(input_img)
86
 
@@ -107,11 +100,11 @@ def sepia(input_img):
107
  fig = draw_plot(pred_img, seg)
108
  return fig
109
 
110
-
111
  demo = gr.Interface(fn=sepia,
112
  inputs=gr.Image(shape=(400, 600)),
113
  outputs=['plot'],
114
- examples=["person-1.jpg,person-2.jpg,person-3.jpg,person-4.jpg,person-5.jpg"],
115
  allow_flagging='never')
116
 
 
117
  demo.launch()
 
7
  import tensorflow as tf
8
  from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
 
 
 
10
  feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
  "mattmdjaga/segformer_b2_clothes"
12
  )
 
14
  "mattmdjaga/segformer_b2_clothes"
15
  )
16
 
 
17
  def ade_palette():
18
  """ADE20K palette that maps each class to RGB values."""
19
  return [
 
37
  [67, 57, 91],
38
  ]
39
 
 
40
  labels_list = []
41
 
42
  with open(r'labels.txt', 'r') as fp:
 
45
 
46
  colormap = np.asarray(ade_palette())
47
 
 
48
  def label_to_color_image(label):
49
  if label.ndim != 2:
50
  raise ValueError("Expect 2-D input label")
 
53
  raise ValueError("label value too large.")
54
  return colormap[label]
55
 
 
56
  def draw_plot(pred_img, seg):
57
  fig = plt.figure(figsize=(20, 15))
58
 
 
74
  ax.tick_params(width=0.0, labelsize=25)
75
  return fig
76
 
 
77
  def sepia(input_img):
78
  input_img = Image.fromarray(input_img)
79
 
 
100
  fig = draw_plot(pred_img, seg)
101
  return fig
102
 
 
103
  demo = gr.Interface(fn=sepia,
104
  inputs=gr.Image(shape=(400, 600)),
105
  outputs=['plot'],
106
+ examples=["person-1.jpg", "person-2.jpg", "person-3.jpg", "person-4.jpg", "person-5.jpg"],
107
  allow_flagging='never')
108
 
109
+
110
  demo.launch()