Spaces:
Runtime error
Runtime error
""" | |
ModelArgs Class | |
=============== | |
""" | |
from dataclasses import dataclass | |
import json | |
import os | |
import transformers | |
import textattack | |
from textattack.shared.utils import ARGS_SPLIT_TOKEN, load_module_from_file | |
HUGGINGFACE_MODELS = { | |
# | |
# bert-base-uncased | |
# | |
"bert-base-uncased": "bert-base-uncased", | |
"bert-base-uncased-ag-news": "textattack/bert-base-uncased-ag-news", | |
"bert-base-uncased-cola": "textattack/bert-base-uncased-CoLA", | |
"bert-base-uncased-imdb": "textattack/bert-base-uncased-imdb", | |
"bert-base-uncased-mnli": "textattack/bert-base-uncased-MNLI", | |
"bert-base-uncased-mrpc": "textattack/bert-base-uncased-MRPC", | |
"bert-base-uncased-qnli": "textattack/bert-base-uncased-QNLI", | |
"bert-base-uncased-qqp": "textattack/bert-base-uncased-QQP", | |
"bert-base-uncased-rte": "textattack/bert-base-uncased-RTE", | |
"bert-base-uncased-sst2": "textattack/bert-base-uncased-SST-2", | |
"bert-base-uncased-stsb": "textattack/bert-base-uncased-STS-B", | |
"bert-base-uncased-wnli": "textattack/bert-base-uncased-WNLI", | |
"bert-base-uncased-mr": "textattack/bert-base-uncased-rotten-tomatoes", | |
"bert-base-uncased-snli": "textattack/bert-base-uncased-snli", | |
"bert-base-uncased-yelp": "textattack/bert-base-uncased-yelp-polarity", | |
# | |
# distilbert-base-cased | |
# | |
"distilbert-base-uncased": "distilbert-base-uncased", | |
"distilbert-base-cased-cola": "textattack/distilbert-base-cased-CoLA", | |
"distilbert-base-cased-mrpc": "textattack/distilbert-base-cased-MRPC", | |
"distilbert-base-cased-qqp": "textattack/distilbert-base-cased-QQP", | |
"distilbert-base-cased-snli": "textattack/distilbert-base-cased-snli", | |
"distilbert-base-cased-sst2": "textattack/distilbert-base-cased-SST-2", | |
"distilbert-base-cased-stsb": "textattack/distilbert-base-cased-STS-B", | |
"distilbert-base-uncased-ag-news": "textattack/distilbert-base-uncased-ag-news", | |
"distilbert-base-uncased-cola": "textattack/distilbert-base-cased-CoLA", | |
"distilbert-base-uncased-imdb": "textattack/distilbert-base-uncased-imdb", | |
"distilbert-base-uncased-mnli": "textattack/distilbert-base-uncased-MNLI", | |
"distilbert-base-uncased-mr": "textattack/distilbert-base-uncased-rotten-tomatoes", | |
"distilbert-base-uncased-mrpc": "textattack/distilbert-base-uncased-MRPC", | |
"distilbert-base-uncased-qnli": "textattack/distilbert-base-uncased-QNLI", | |
"distilbert-base-uncased-rte": "textattack/distilbert-base-uncased-RTE", | |
"distilbert-base-uncased-wnli": "textattack/distilbert-base-uncased-WNLI", | |
# | |
# roberta-base (RoBERTa is cased by default) | |
# | |
"roberta-base": "roberta-base", | |
"roberta-base-ag-news": "textattack/roberta-base-ag-news", | |
"roberta-base-cola": "textattack/roberta-base-CoLA", | |
"roberta-base-imdb": "textattack/roberta-base-imdb", | |
"roberta-base-mr": "textattack/roberta-base-rotten-tomatoes", | |
"roberta-base-mrpc": "textattack/roberta-base-MRPC", | |
"roberta-base-qnli": "textattack/roberta-base-QNLI", | |
"roberta-base-rte": "textattack/roberta-base-RTE", | |
"roberta-base-sst2": "textattack/roberta-base-SST-2", | |
"roberta-base-stsb": "textattack/roberta-base-STS-B", | |
"roberta-base-wnli": "textattack/roberta-base-WNLI", | |
# | |
# albert-base-v2 (ALBERT is cased by default) | |
# | |
"albert-base-v2": "albert-base-v2", | |
"albert-base-v2-ag-news": "textattack/albert-base-v2-ag-news", | |
"albert-base-v2-cola": "textattack/albert-base-v2-CoLA", | |
"albert-base-v2-imdb": "textattack/albert-base-v2-imdb", | |
"albert-base-v2-mr": "textattack/albert-base-v2-rotten-tomatoes", | |
"albert-base-v2-rte": "textattack/albert-base-v2-RTE", | |
"albert-base-v2-qqp": "textattack/albert-base-v2-QQP", | |
"albert-base-v2-snli": "textattack/albert-base-v2-snli", | |
"albert-base-v2-sst2": "textattack/albert-base-v2-SST-2", | |
"albert-base-v2-stsb": "textattack/albert-base-v2-STS-B", | |
"albert-base-v2-wnli": "textattack/albert-base-v2-WNLI", | |
"albert-base-v2-yelp": "textattack/albert-base-v2-yelp-polarity", | |
# | |
# xlnet-base-cased | |
# | |
"xlnet-base-cased": "xlnet-base-cased", | |
"xlnet-base-cased-cola": "textattack/xlnet-base-cased-CoLA", | |
"xlnet-base-cased-imdb": "textattack/xlnet-base-cased-imdb", | |
"xlnet-base-cased-mr": "textattack/xlnet-base-cased-rotten-tomatoes", | |
"xlnet-base-cased-mrpc": "textattack/xlnet-base-cased-MRPC", | |
"xlnet-base-cased-rte": "textattack/xlnet-base-cased-RTE", | |
"xlnet-base-cased-stsb": "textattack/xlnet-base-cased-STS-B", | |
"xlnet-base-cased-wnli": "textattack/xlnet-base-cased-WNLI", | |
} | |
# | |
# Models hosted by textattack. | |
# `models` vs `models_v2`: `models_v2` is simply a new dir in S3 that contains models' `config.json`. | |
# Fixes issue https://github.com/QData/TextAttack/issues/485 | |
# Model parameters has not changed. | |
# | |
TEXTATTACK_MODELS = { | |
# | |
# LSTMs | |
# | |
"lstm-ag-news": "models_v2/classification/lstm/ag-news", | |
"lstm-imdb": "models_v2/classification/lstm/imdb", | |
"lstm-mr": "models_v2/classification/lstm/mr", | |
"lstm-sst2": "models_v2/classification/lstm/sst2", | |
"lstm-yelp": "models_v2/classification/lstm/yelp", | |
# | |
# CNNs | |
# | |
"cnn-ag-news": "models_v2/classification/cnn/ag-news", | |
"cnn-imdb": "models_v2/classification/cnn/imdb", | |
"cnn-mr": "models_v2/classification/cnn/rotten-tomatoes", | |
"cnn-sst2": "models_v2/classification/cnn/sst", | |
"cnn-yelp": "models_v2/classification/cnn/yelp", | |
# | |
# T5 for translation | |
# | |
"t5-en-de": "english_to_german", | |
"t5-en-fr": "english_to_french", | |
"t5-en-ro": "english_to_romanian", | |
# | |
# T5 for summarization | |
# | |
"t5-summarization": "summarization", | |
} | |
class ModelArgs: | |
"""Arguments for loading base/pretrained or trained models.""" | |
model: str = None | |
model_from_file: str = None | |
model_from_huggingface: str = None | |
def _add_parser_args(cls, parser): | |
"""Adds model-related arguments to an argparser.""" | |
model_group = parser.add_mutually_exclusive_group() | |
model_names = list(HUGGINGFACE_MODELS.keys()) + list(TEXTATTACK_MODELS.keys()) | |
model_group.add_argument( | |
"--model", | |
type=str, | |
required=False, | |
default=None, | |
help="Name of or path to a pre-trained TextAttack model to load. Choices: " | |
+ str(model_names), | |
) | |
model_group.add_argument( | |
"--model-from-file", | |
type=str, | |
required=False, | |
help="File of model and tokenizer to import.", | |
) | |
model_group.add_argument( | |
"--model-from-huggingface", | |
type=str, | |
required=False, | |
help="Name of or path of pre-trained HuggingFace model to load.", | |
) | |
return parser | |
def _create_model_from_args(cls, args): | |
"""Given ``ModelArgs``, return specified | |
``textattack.models.wrappers.ModelWrapper`` object.""" | |
assert isinstance( | |
args, cls | |
), f"Expect args to be of type `{type(cls)}`, but got type `{type(args)}`." | |
if args.model_from_file: | |
# Support loading the model from a .py file where a model wrapper | |
# is instantiated. | |
colored_model_name = textattack.shared.utils.color_text( | |
args.model_from_file, color="blue", method="ansi" | |
) | |
textattack.shared.logger.info( | |
f"Loading model and tokenizer from file: {colored_model_name}" | |
) | |
if ARGS_SPLIT_TOKEN in args.model_from_file: | |
model_file, model_name = args.model_from_file.split(ARGS_SPLIT_TOKEN) | |
else: | |
_, model_name = args.model_from_file, "model" | |
try: | |
model_module = load_module_from_file(args.model_from_file) | |
except Exception: | |
raise ValueError(f"Failed to import file {args.model_from_file}.") | |
try: | |
model = getattr(model_module, model_name) | |
except AttributeError: | |
raise AttributeError( | |
f"Variable `{model_name}` not found in module {args.model_from_file}." | |
) | |
if not isinstance(model, textattack.models.wrappers.ModelWrapper): | |
raise TypeError( | |
f"Variable `{model_name}` must be of type " | |
f"``textattack.models.ModelWrapper``, got type {type(model)}." | |
) | |
elif (args.model in HUGGINGFACE_MODELS) or args.model_from_huggingface: | |
# Support loading models automatically from the HuggingFace model hub. | |
model_name = ( | |
HUGGINGFACE_MODELS[args.model] | |
if (args.model in HUGGINGFACE_MODELS) | |
else args.model_from_huggingface | |
) | |
colored_model_name = textattack.shared.utils.color_text( | |
model_name, color="blue", method="ansi" | |
) | |
textattack.shared.logger.info( | |
f"Loading pre-trained model from HuggingFace model repository: {colored_model_name}" | |
) | |
model = transformers.AutoModelForSequenceClassification.from_pretrained( | |
model_name | |
) | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_name, use_fast=True | |
) | |
model = textattack.models.wrappers.HuggingFaceModelWrapper(model, tokenizer) | |
elif args.model in TEXTATTACK_MODELS: | |
# Support loading TextAttack pre-trained models via just a keyword. | |
colored_model_name = textattack.shared.utils.color_text( | |
args.model, color="blue", method="ansi" | |
) | |
if args.model.startswith("lstm"): | |
textattack.shared.logger.info( | |
f"Loading pre-trained TextAttack LSTM: {colored_model_name}" | |
) | |
model = textattack.models.helpers.LSTMForClassification.from_pretrained( | |
args.model | |
) | |
elif args.model.startswith("cnn"): | |
textattack.shared.logger.info( | |
f"Loading pre-trained TextAttack CNN: {colored_model_name}" | |
) | |
model = ( | |
textattack.models.helpers.WordCNNForClassification.from_pretrained( | |
args.model | |
) | |
) | |
elif args.model.startswith("t5"): | |
model = textattack.models.helpers.T5ForTextToText.from_pretrained( | |
args.model | |
) | |
else: | |
raise ValueError(f"Unknown textattack model {args.model}") | |
# Choose the approprate model wrapper (based on whether or not this is | |
# a HuggingFace model). | |
if isinstance(model, textattack.models.helpers.T5ForTextToText): | |
model = textattack.models.wrappers.HuggingFaceModelWrapper( | |
model, model.tokenizer | |
) | |
else: | |
model = textattack.models.wrappers.PyTorchModelWrapper( | |
model, model.tokenizer | |
) | |
elif args.model and os.path.exists(args.model): | |
# Support loading TextAttack-trained models via just their folder path. | |
# If `args.model` is a path/directory, let's assume it was a model | |
# trained with textattack, and try and load it. | |
if os.path.exists(os.path.join(args.model, "t5-wrapper-config.json")): | |
model = textattack.models.helpers.T5ForTextToText.from_pretrained( | |
args.model | |
) | |
model = textattack.models.wrappers.HuggingFaceModelWrapper( | |
model, model.tokenizer | |
) | |
elif os.path.exists(os.path.join(args.model, "config.json")): | |
with open(os.path.join(args.model, "config.json")) as f: | |
config = json.load(f) | |
model_class = config["architectures"] | |
if ( | |
model_class == "LSTMForClassification" | |
or model_class == "WordCNNForClassification" | |
): | |
model = eval( | |
f"textattack.models.helpers.{model_class}.from_pretrained({args.model})" | |
) | |
model = textattack.models.wrappers.PyTorchModelWrapper( | |
model, model.tokenizer | |
) | |
else: | |
# assume the model is from HuggingFace. | |
model = ( | |
transformers.AutoModelForSequenceClassification.from_pretrained( | |
args.model | |
) | |
) | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
args.model, use_fast=True | |
) | |
model = textattack.models.wrappers.HuggingFaceModelWrapper( | |
model, tokenizer | |
) | |
else: | |
raise ValueError(f"Error: unsupported TextAttack model {args.model}") | |
assert isinstance( | |
model, textattack.models.wrappers.ModelWrapper | |
), "`model` must be of type `textattack.models.wrappers.ModelWrapper`." | |
return model | |