Spaces:
Running
on
Zero
Running
on
Zero
File size: 44,387 Bytes
ff715ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 |
from einops import rearrange, reduce, repeat
import torch.nn.functional as F
import torch
import gc
from src.utils import *
from src.flow_utils import get_mapping_ind, warp_tensor
from diffusers.models.unet_2d_condition import UNet2DConditionOutput
from diffusers.models.attention_processor import AttnProcessor2_0
from typing import Any, Dict, List, Optional, Tuple, Union
import sys
sys.path.append("./src/ebsynth/deps/gmflow/")
from gmflow.geometry import flow_warp, forward_backward_consistency_check
"""
==========================================================================
PART I - FRESCO-based attention
* Class AttentionControl: Control the function of FRESCO-based attention
* Class FRESCOAttnProcessor2_0: FRESCO-based attention
* apply_FRESCO_attn(): Apply FRESCO-based attention to a StableDiffusionPipeline
==========================================================================
"""
class AttentionControl():
"""
Control FRESCO-based attention
* enable/diable spatial-guided attention
* enable/diable temporal-guided attention
* enable/diable cross-frame attention
* collect intermediate attention feature (for spatial-guided attention)
"""
def __init__(self):
self.stored_attn = self.get_empty_store()
self.store = False
self.index = 0
self.attn_mask = None
self.interattn_paras = None
self.use_interattn = False
self.use_cfattn = False
self.use_intraattn = False
self.intraattn_bias = 0
self.intraattn_scale_factor = 0.2
self.interattn_scale_factor = 0.2
@staticmethod
def get_empty_store():
return {
'decoder_attn': [],
}
def clear_store(self):
del self.stored_attn
torch.cuda.empty_cache()
gc.collect()
self.stored_attn = self.get_empty_store()
self.disable_intraattn()
# store attention feature of the input frame for spatial-guided attention
def enable_store(self):
self.store = True
def disable_store(self):
self.store = False
# spatial-guided attention
def enable_intraattn(self):
self.index = 0
self.use_intraattn = True
self.disable_store()
if len(self.stored_attn['decoder_attn']) == 0:
self.use_intraattn = False
def disable_intraattn(self):
self.index = 0
self.use_intraattn = False
self.disable_store()
def disable_cfattn(self):
self.use_cfattn = False
# cross frame attention
def enable_cfattn(self, attn_mask=None):
if attn_mask:
if self.attn_mask:
del self.attn_mask
torch.cuda.empty_cache()
self.attn_mask = attn_mask
self.use_cfattn = True
else:
if self.attn_mask:
self.use_cfattn = True
else:
print('Warning: no valid cross-frame attention parameters available!')
self.disable_cfattn()
def disable_interattn(self):
self.use_interattn = False
# temporal-guided attention
def enable_interattn(self, interattn_paras=None):
if interattn_paras:
if self.interattn_paras:
del self.interattn_paras
torch.cuda.empty_cache()
self.interattn_paras = interattn_paras
self.use_interattn = True
else:
if self.interattn_paras:
self.use_interattn = True
else:
print('Warning: no valid temporal-guided attention parameters available!')
self.disable_interattn()
def disable_controller(self):
self.disable_intraattn()
self.disable_interattn()
self.disable_cfattn()
def enable_controller(self, interattn_paras=None, attn_mask=None):
self.enable_intraattn()
self.enable_interattn(interattn_paras)
self.enable_cfattn(attn_mask)
def forward(self, context):
if self.store:
self.stored_attn['decoder_attn'].append(context.detach())
if self.use_intraattn and len(self.stored_attn['decoder_attn']) > 0:
tmp = self.stored_attn['decoder_attn'][self.index]
self.index = self.index + 1
if self.index >= len(self.stored_attn['decoder_attn']):
self.index = 0
self.disable_store()
return tmp
return context
def __call__(self, context):
context = self.forward(context)
return context
#import xformers
#import importlib
class FRESCOAttnProcessor2_0:
"""
Hack self attention to FRESCO-based attention
* adding spatial-guided attention
* adding temporal-guided attention
* adding cross-frame attention
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
Usage
frescoProc = FRESCOAttnProcessor2_0(2, attn_mask)
attnProc = AttnProcessor2_0()
attn_processor_dict = {}
for k in pipe.unet.attn_processors.keys():
if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"):
attn_processor_dict[k] = frescoProc
else:
attn_processor_dict[k] = attnProc
pipe.unet.set_attn_processor(attn_processor_dict)
"""
def __init__(self, unet_chunk_size=2, controller=None):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.unet_chunk_size = unet_chunk_size
self.controller = controller
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
crossattn = False
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
if self.controller and self.controller.store:
self.controller(hidden_states.detach().clone())
else:
crossattn = True
if attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
# BC * HW * 8D
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query_raw, key_raw = None, None
if self.controller and self.controller.use_interattn and (not crossattn):
query_raw, key_raw = query.clone(), key.clone()
inner_dim = key.shape[-1] # 8D
head_dim = inner_dim // attn.heads # D
'''for efficient cross-frame attention'''
if self.controller and self.controller.use_cfattn and (not crossattn):
video_length = key.size()[0] // self.unet_chunk_size
former_frame_index = [0] * video_length
attn_mask = None
if self.controller.attn_mask is not None:
for m in self.controller.attn_mask:
if m.shape[1] == key.shape[1]:
attn_mask = m
# BC * HW * 8D --> B * C * HW * 8D
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
# B * C * HW * 8D --> B * C * HW * 8D
if attn_mask is None:
key = key[:, former_frame_index]
else:
key = repeat(key[:, attn_mask], "b d c -> b f d c", f=video_length)
# B * C * HW * 8D --> BC * HW * 8D
key = rearrange(key, "b f d c -> (b f) d c").detach()
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
if attn_mask is None:
value = value[:, former_frame_index]
else:
value = repeat(value[:, attn_mask], "b d c -> b f d c", f=video_length)
value = rearrange(value, "b f d c -> (b f) d c").detach()
# BC * HW * 8D --> BC * HW * 8 * D --> BC * 8 * HW * D
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# BC * 8 * HW2 * D
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# BC * 8 * HW2 * D2
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
'''for spatial-guided intra-frame attention'''
if self.controller and self.controller.use_intraattn and (not crossattn):
ref_hidden_states = self.controller(None)
assert ref_hidden_states.shape == encoder_hidden_states.shape
query_ = attn.to_q(ref_hidden_states)
key_ = attn.to_k(ref_hidden_states)
'''
# for xformers implementation
if importlib.util.find_spec("xformers") is not None:
# BC * HW * 8D --> BC * HW * 8 * D
query_ = rearrange(query_, "b d (h c) -> b d h c", h=attn.heads)
key_ = rearrange(key_, "b d (h c) -> b d h c", h=attn.heads)
# BC * 8 * HW * D --> 8BC * HW * D
query = rearrange(query, "b h d c -> b d h c")
query = xformers.ops.memory_efficient_attention(
query_, key_ * self.sattn_scale_factor, query,
attn_bias=torch.eye(query_.size(1), key_.size(1),
dtype=query.dtype, device=query.device) * self.bias_weight, op=None
)
query = rearrange(query, "b d h c -> b h d c").detach()
'''
# BC * 8 * HW * D
query_ = query_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key_ = key_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
query = F.scaled_dot_product_attention(
query_, key_ * self.controller.intraattn_scale_factor, query,
attn_mask = torch.eye(query_.size(-2), key_.size(-2),
dtype=query.dtype, device=query.device) * self.controller.intraattn_bias,
).detach()
#print('intra: ', GPU.getGPUs()[1].memoryUsed)
del query_, key_
torch.cuda.empty_cache()
'''
# for xformers implementation
if importlib.util.find_spec("xformers") is not None:
hidden_states = xformers.ops.memory_efficient_attention(
rearrange(query, "b h d c -> b d h c"), rearrange(key, "b h d c -> b d h c"),
rearrange(value, "b h d c -> b d h c"),
attn_bias=attention_mask, op=None
)
hidden_states = rearrange(hidden_states, "b d h c -> b h d c", h=attn.heads)
'''
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
# output: BC * 8 * HW * D2
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
#print('cross: ', GPU.getGPUs()[1].memoryUsed)
'''for temporal-guided inter-frame attention (FLATTEN)'''
if self.controller and self.controller.use_interattn and (not crossattn):
del query, key, value
torch.cuda.empty_cache()
bwd_mapping = None
fwd_mapping = None
flattn_mask = None
for i, f in enumerate(self.controller.interattn_paras['fwd_mappings']):
if f.shape[2] == hidden_states.shape[2]:
fwd_mapping = f
bwd_mapping = self.controller.interattn_paras['bwd_mappings'][i]
interattn_mask = self.controller.interattn_paras['interattn_masks'][i]
video_length = key_raw.size()[0] // self.unet_chunk_size
# BC * HW * 8D --> C * 8BD * HW
key = rearrange(key_raw, "(b f) d c -> f (b c) d", f=video_length)
query = rearrange(query_raw, "(b f) d c -> f (b c) d", f=video_length)
# BC * 8 * HW * D --> C * 8BD * HW
#key = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) ########
#query = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) #######
value = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length)
key = torch.gather(key, 2, fwd_mapping.expand(-1,key.shape[1],-1))
query = torch.gather(query, 2, fwd_mapping.expand(-1,query.shape[1],-1))
value = torch.gather(value, 2, fwd_mapping.expand(-1,value.shape[1],-1))
# C * 8BD * HW --> BHW, C, 8D
key = rearrange(key, "f (b c) d -> (b d) f c", b=self.unet_chunk_size)
query = rearrange(query, "f (b c) d -> (b d) f c", b=self.unet_chunk_size)
value = rearrange(value, "f (b c) d -> (b d) f c", b=self.unet_chunk_size)
'''
# for xformers implementation
if importlib.util.find_spec("xformers") is not None:
# BHW * C * 8D --> BHW * C * 8 * D
query = rearrange(query, "b d (h c) -> b d h c", h=attn.heads)
key = rearrange(key, "b d (h c) -> b d h c", h=attn.heads)
value = rearrange(value, "b d (h c) -> b d h c", h=attn.heads)
B, D, C, _ = flattn_mask.shape
C1 = int(np.ceil(C / 4) * 4)
attn_bias = torch.zeros(B, D, C, C1, dtype=value.dtype, device=value.device) # HW * 1 * C * C
attn_bias[:,:,:,:C].masked_fill_(interattn_mask.logical_not(), float("-inf")) # BHW * C * C
hidden_states_ = xformers.ops.memory_efficient_attention(
query, key * self.controller.interattn_scale_factor, value,
attn_bias=attn_bias.squeeze(1).repeat(self.unet_chunk_size*attn.heads,1,1)[:,:,:C], op=None
)
hidden_states_ = rearrange(hidden_states_, "b d h c -> b h d c", h=attn.heads).detach()
'''
# BHW * C * 8D --> BHW * C * 8 * D--> BHW * 8 * C * D
query = query.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach()
key = key.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach()
value = value.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach()
hidden_states_ = F.scaled_dot_product_attention(
query, key * self.controller.interattn_scale_factor, value,
attn_mask = (interattn_mask.repeat(self.unet_chunk_size,1,1,1))#.to(query.dtype)-1.0) * 1e6 -
#torch.eye(interattn_mask.shape[2]).to(query.device).to(query.dtype) * 1e4,
)
# BHW * 8 * C * D --> C * 8BD * HW
hidden_states_ = rearrange(hidden_states_, "(b d) h f c -> f (b h c) d", b=self.unet_chunk_size)
hidden_states_ = torch.gather(hidden_states_, 2, bwd_mapping.expand(-1,hidden_states_.shape[1],-1)).detach()
# C * 8BD * HW --> BC * 8 * HW * D
hidden_states = rearrange(hidden_states_, "f (b h c) d -> (b f) h d c", b=self.unet_chunk_size, h=attn.heads)
#print('inter: ', GPU.getGPUs()[1].memoryUsed)
# BC * 8 * HW * D --> BC * HW * 8D
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def apply_FRESCO_attn(pipe):
"""
Apply FRESCO-guided attention to a StableDiffusionPipeline
"""
frescoProc = FRESCOAttnProcessor2_0(2, AttentionControl())
attnProc = AttnProcessor2_0()
attn_processor_dict = {}
for k in pipe.unet.attn_processors.keys():
if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"):
attn_processor_dict[k] = frescoProc
else:
attn_processor_dict[k] = attnProc
pipe.unet.set_attn_processor(attn_processor_dict)
return frescoProc
"""
==========================================================================
PART II - FRESCO-based optimization
* optimize_feature(): function to optimze latent feature
* my_forward(): hacked pipe.unet.forward(), adding feature optimization
* apply_FRESCO_opt(): function to apply FRESCO-based optimization to a StableDiffusionPipeline
* disable_FRESCO_opt(): function to disable the FRESCO-based optimization
==========================================================================
"""
def optimize_feature(sample, flows, occs, correlation_matrix=[],
intra_weight = 1e2, iters=20, unet_chunk_size=2, optimize_temporal = True):
"""
FRESO-guided latent feature optimization
* optimize spatial correspondence (match correlation_matrix)
* optimize temporal correspondence (match warped_image)
"""
if (flows is None or occs is None or (not optimize_temporal)) and (intra_weight == 0 or len(correlation_matrix) == 0):
return sample
# flows=[fwd_flows, bwd_flows]: (N-1)*2*H1*W1
# occs=[fwd_occs, bwd_occs]: (N-1)*H1*W1
# sample: 2N*C*H*W
torch.cuda.empty_cache()
video_length = sample.shape[0] // unet_chunk_size
latent = rearrange(sample.to(torch.float32), "(b f) c h w -> b f c h w", f=video_length)
cs = torch.nn.Parameter((latent.detach().clone()))
optimizer = torch.optim.Adam([cs], lr=0.2)
# unify resolution
if flows is not None and occs is not None:
scale = sample.shape[2] * 1.0 / flows[0].shape[2]
kernel = int(1 / scale)
bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode='bilinear').repeat(unet_chunk_size,1,1,1)
bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel).repeat(unet_chunk_size,1,1,1) # 2(N-1)*1*H1*W1
fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode='bilinear').repeat(unet_chunk_size,1,1,1)
fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel).repeat(unet_chunk_size,1,1,1) # 2(N-1)*1*H1*W1
# match frame 0,1,2,3 and frame 1,2,3,0
reshuffle_list = list(range(1,video_length))+[0]
# attention_probs is the GRAM matrix of the normalized feature
attention_probs = None
for tmp in correlation_matrix:
if sample.shape[2] * sample.shape[3] == tmp.shape[1]:
attention_probs = tmp # 2N*HW*HW
break
n_iter=[0]
while n_iter[0] < iters:
def closure():
optimizer.zero_grad()
loss = 0
# temporal consistency loss
if optimize_temporal and flows is not None and occs is not None:
c1 = rearrange(cs[:,:], "b f c h w -> (b f) c h w")
c2 = rearrange(cs[:,reshuffle_list], "b f c h w -> (b f) c h w")
warped_image1 = flow_warp(c1, bwd_flow_)
warped_image2 = flow_warp(c2, fwd_flow_)
loss = (abs((c2-warped_image1)*(1-bwd_occ_)) + abs((c1-warped_image2)*(1-fwd_occ_))).mean() * 2
# spatial consistency loss
if attention_probs is not None and intra_weight > 0:
cs_vector = rearrange(cs, "b f c h w -> (b f) (h w) c")
#attention_scores = torch.bmm(cs_vector, cs_vector.transpose(-1, -2))
#cs_attention_probs = attention_scores.softmax(dim=-1)
cs_vector = cs_vector / ((cs_vector ** 2).sum(dim=2, keepdims=True) ** 0.5)
cs_attention_probs = torch.bmm(cs_vector, cs_vector.transpose(-1, -2))
tmp = F.l1_loss(cs_attention_probs, attention_probs) * intra_weight
loss = tmp + loss
loss.backward()
n_iter[0]+=1
if False: # for debug
print('Iteration: %d, loss: %f'%(n_iter[0]+1, loss.data.mean()))
return loss
optimizer.step(closure)
torch.cuda.empty_cache()
return adaptive_instance_normalization(rearrange(cs.data.to(sample.dtype), "b f c h w -> (b f) c h w"), sample)
def my_forward(self, steps = [], layers = [0,1,2,3], flows = None, occs = None,
correlation_matrix=[], intra_weight = 1e2, iters=20, optimize_temporal = True, saliency = None):
"""
Hacked pipe.unet.forward()
copied from https://github.com/huggingface/diffusers/blob/v0.19.3/src/diffusers/models/unet_2d_condition.py#L700
if you are using a new version of diffusers, please copy the source code and modify it accordingly (find [HACK] in the code)
* restore and return the decoder features
* optimize the decoder features
* perform background smoothing
"""
def forward(
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[UNet2DConditionOutput, Tuple]:
r"""
The [`UNet2DConditionModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor with the following shape `(batch, channel, height, width)`.
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
encoder_hidden_states (`torch.FloatTensor`):
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
encoder_attention_mask (`torch.Tensor`):
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
which adds large negative values to the attention scores corresponding to "discard" tokens.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
added_cond_kwargs: (`dict`, *optional*):
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
are passed along to the UNet blocks.
Returns:
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
a `tuple` is returned where the first element is the sample tensor.
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None:
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 0. center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
aug_emb = None
if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
# `Timesteps` does not contain any weights and will always return f32 tensors
# there might be better ways to encapsulate this.
class_labels = class_labels.to(dtype=sample.dtype)
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
if self.config.class_embeddings_concat:
emb = torch.cat([emb, class_emb], dim=-1)
else:
emb = emb + class_emb
if self.config.addition_embed_type == "text":
aug_emb = self.add_embedding(encoder_hidden_states)
elif self.config.addition_embed_type == "text_image":
# Kandinsky 2.1 - style
if "image_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
)
image_embs = added_cond_kwargs.get("image_embeds")
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
aug_emb = self.add_embedding(text_embs, image_embs)
elif self.config.addition_embed_type == "text_time":
# SDXL - style
if "text_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
)
text_embeds = added_cond_kwargs.get("text_embeds")
if "time_ids" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
)
time_ids = added_cond_kwargs.get("time_ids")
time_embeds = self.add_time_proj(time_ids.flatten())
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
add_embeds = add_embeds.to(emb.dtype)
aug_emb = self.add_embedding(add_embeds)
elif self.config.addition_embed_type == "image":
# Kandinsky 2.2 - style
if "image_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
)
image_embs = added_cond_kwargs.get("image_embeds")
aug_emb = self.add_embedding(image_embs)
elif self.config.addition_embed_type == "image_hint":
# Kandinsky 2.2 - style
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
)
image_embs = added_cond_kwargs.get("image_embeds")
hint = added_cond_kwargs.get("hint")
aug_emb, hint = self.add_embedding(image_embs, hint)
sample = torch.cat([sample, hint], dim=1)
emb = emb + aug_emb if aug_emb is not None else emb
if self.time_embed_act is not None:
emb = self.time_embed_act(emb)
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
# Kadinsky 2.1 - style
if "image_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
)
image_embeds = added_cond_kwargs.get("image_embeds")
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
# Kandinsky 2.2 - style
if "image_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
)
image_embeds = added_cond_kwargs.get("image_embeds")
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
# 2. pre-process
sample = self.conv_in(sample)
# 3. down
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
# For t2i-adapter CrossAttnDownBlock2D
additional_residuals = {}
if is_adapter and len(down_block_additional_residuals) > 0:
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
**additional_residuals,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
if is_adapter and len(down_block_additional_residuals) > 0:
sample += down_block_additional_residuals.pop(0)
down_block_res_samples += res_samples
if is_controlnet:
new_down_block_res_samples = ()
for down_block_res_sample, down_block_additional_residual in zip(
down_block_res_samples, down_block_additional_residuals
):
down_block_res_sample = down_block_res_sample + down_block_additional_residual
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
down_block_res_samples = new_down_block_res_samples
# 4. mid
if self.mid_block is not None:
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
)
if is_controlnet:
sample = sample + mid_block_additional_residual
# 5. up
'''
[HACK] restore the decoder features in up_samples
'''
up_samples = ()
#down_samples = ()
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
'''
[HACK] restore the decoder features in up_samples
[HACK] optimize the decoder features
[HACK] perform background smoothing
'''
if i in layers:
up_samples += (sample, )
if timestep in steps and i in layers:
sample = optimize_feature(sample, flows, occs, correlation_matrix,
intra_weight, iters, optimize_temporal = optimize_temporal)
if saliency is not None:
sample = warp_tensor(sample, flows, occs, saliency, 2)
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
# 6. post-process
if self.conv_norm_out:
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
'''
[HACK] return the output feature as well as the decoder features
'''
if not return_dict:
return (sample, ) + up_samples
return UNet2DConditionOutput(sample=sample)
return forward
def apply_FRESCO_opt(pipe, steps = [], layers = [0,1,2,3], flows = None, occs = None,
correlation_matrix=[], intra_weight = 1e2, iters=20, optimize_temporal = True, saliency = None):
"""
Apply FRESCO-based optimization to a StableDiffusionPipeline
"""
pipe.unet.forward = my_forward(pipe.unet, steps, layers, flows, occs,
correlation_matrix, intra_weight, iters, optimize_temporal, saliency)
def disable_FRESCO_opt(pipe):
"""
Disable the FRESCO-based optimization
"""
apply_FRESCO_opt(pipe)
"""
=====================================================================================
PART III - Prepare parameters for FRESCO-guided attention/optimization
* get_intraframe_paras(): get parameters for spatial-guided attention/optimization
* get_flow_and_interframe_paras(): get parameters for temporal-guided attention/optimization
=====================================================================================
"""
@torch.no_grad()
def get_intraframe_paras(pipe, imgs, frescoProc,
prompt_embeds, do_classifier_free_guidance=True, seed=0):
"""
Get parameters for spatial-guided attention and optimization
* perform one step denoising
* collect attention feature, stored in frescoProc.controller.stored_attn['decoder_attn']
* compute the gram matrix of the normalized feature for spatial consistency loss
"""
noise_scheduler = pipe.scheduler
timestep = noise_scheduler.timesteps[-1]
device = pipe._execution_device
generator = torch.Generator(device=device).manual_seed(seed)
B, C, H, W = imgs.shape
frescoProc.controller.disable_controller()
disable_FRESCO_opt(pipe)
frescoProc.controller.clear_store()
frescoProc.controller.enable_store()
latents = pipe.prepare_latents(
B,
pipe.unet.config.in_channels,
H,
W,
prompt_embeds.dtype,
device,
generator,
latents = None,
)
latent_x0 = pipe.vae.config.scaling_factor * pipe.vae.encode(imgs.to(pipe.unet.dtype)).latent_dist.sample()
latents = noise_scheduler.add_noise(latent_x0, latents, timestep).detach()
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
model_output = pipe.unet(
latent_model_input,
timestep,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=None,
return_dict=False,
)
frescoProc.controller.disable_store()
# gram matrix of the normalized feature for spatial consistency loss
correlation_matrix = []
for tmp in model_output[1:]:
latent_vector = rearrange(tmp, "b c h w -> b (h w) c")
latent_vector = latent_vector / ((latent_vector ** 2).sum(dim=2, keepdims=True) ** 0.5)
attention_probs = torch.bmm(latent_vector, latent_vector.transpose(-1, -2))
correlation_matrix += [attention_probs.detach().clone().to(torch.float32)]
del attention_probs, latent_vector, tmp
del model_output
gc.collect()
torch.cuda.empty_cache()
return correlation_matrix
@torch.no_grad()
def get_flow_and_interframe_paras(flow_model, imgs, visualize_pipeline=False):
"""
Get parameters for temporal-guided attention and optimization
* predict optical flow and occlusion mask
* compute pixel index correspondence for FLATTEN
"""
images = torch.stack([torch.from_numpy(img).permute(2, 0, 1).float() for img in imgs], dim=0).cuda()
imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0)
reshuffle_list = list(range(1,len(images)))+[0]
results_dict = flow_model(images, images[reshuffle_list], attn_splits_list=[2],
corr_radius_list=[-1], prop_radius_list=[-1], pred_bidir_flow=True)
flow_pr = results_dict['flow_preds'][-1] # [2*B, 2, H, W]
fwd_flows, bwd_flows = flow_pr.chunk(2) # [B, 2, H, W]
fwd_occs, bwd_occs = forward_backward_consistency_check(fwd_flows, bwd_flows) # [B, H, W]
warped_image1 = flow_warp(images, bwd_flows)
bwd_occs = torch.clamp(bwd_occs + (abs(images[reshuffle_list]-warped_image1).mean(dim=1)>255*0.25).float(), 0 ,1)
warped_image2 = flow_warp(images[reshuffle_list], fwd_flows)
fwd_occs = torch.clamp(fwd_occs + (abs(images-warped_image2).mean(dim=1)>255*0.25).float(), 0 ,1)
if visualize_pipeline:
print('visualized occlusion masks based on optical flows')
viz = torchvision.utils.make_grid(imgs_torch * (1-fwd_occs.unsqueeze(1)), len(images), 1)
visualize(viz.cpu(), 90)
viz = torchvision.utils.make_grid(imgs_torch[reshuffle_list] * (1-bwd_occs.unsqueeze(1)), len(images), 1)
visualize(viz.cpu(), 90)
attn_mask = []
for scale in [8.0, 16.0, 32.0]:
bwd_occs_ = F.interpolate(bwd_occs[:-1].unsqueeze(1), scale_factor=1./scale, mode='bilinear')
attn_mask += [torch.cat((bwd_occs_[0:1].reshape(1,-1)>-1, bwd_occs_.reshape(bwd_occs_.shape[0],-1)>0.5), dim=0)]
fwd_mappings = []
bwd_mappings = []
interattn_masks = []
for scale in [8.0, 16.0]:
fwd_mapping, bwd_mapping, interattn_mask = get_mapping_ind(bwd_flows, bwd_occs, imgs_torch, scale=scale)
fwd_mappings += [fwd_mapping]
bwd_mappings += [bwd_mapping]
interattn_masks += [interattn_mask]
interattn_paras = {}
interattn_paras['fwd_mappings'] = fwd_mappings
interattn_paras['bwd_mappings'] = bwd_mappings
interattn_paras['interattn_masks'] = interattn_masks
gc.collect()
torch.cuda.empty_cache()
return [fwd_flows, bwd_flows], [fwd_occs, bwd_occs], attn_mask, interattn_paras
|