File size: 44,387 Bytes
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
from einops import rearrange, reduce, repeat
import torch.nn.functional as F
import torch
import gc
from src.utils import *
from src.flow_utils import get_mapping_ind, warp_tensor
from diffusers.models.unet_2d_condition import UNet2DConditionOutput
from diffusers.models.attention_processor import AttnProcessor2_0
from typing import Any, Dict, List, Optional, Tuple, Union
import sys
sys.path.append("./src/ebsynth/deps/gmflow/")
from gmflow.geometry import flow_warp, forward_backward_consistency_check

"""
==========================================================================
PART I - FRESCO-based attention
* Class AttentionControl: Control the function of FRESCO-based attention
* Class FRESCOAttnProcessor2_0: FRESCO-based attention
* apply_FRESCO_attn(): Apply FRESCO-based attention to a StableDiffusionPipeline
==========================================================================
"""

class AttentionControl():
    """
    Control FRESCO-based attention
    * enable/diable spatial-guided attention
    * enable/diable temporal-guided attention
    * enable/diable cross-frame attention
    * collect intermediate attention feature (for spatial-guided attention)
    """
    def __init__(self):
        self.stored_attn = self.get_empty_store()
        self.store = False
        self.index = 0
        self.attn_mask = None
        self.interattn_paras = None
        self.use_interattn = False
        self.use_cfattn = False
        self.use_intraattn = False
        self.intraattn_bias = 0
        self.intraattn_scale_factor = 0.2
        self.interattn_scale_factor = 0.2
    
    @staticmethod
    def get_empty_store():
        return {
            'decoder_attn': [],
        }
    
    def clear_store(self):
        del self.stored_attn
        torch.cuda.empty_cache()
        gc.collect()
        self.stored_attn = self.get_empty_store()
        self.disable_intraattn()

    # store attention feature of the input frame for spatial-guided attention
    def enable_store(self):
        self.store = True
        
    def disable_store(self):
        self.store = False  

    # spatial-guided attention
    def enable_intraattn(self):
        self.index = 0
        self.use_intraattn = True
        self.disable_store()
        if len(self.stored_attn['decoder_attn']) == 0:
            self.use_intraattn = False
        
    def disable_intraattn(self):
        self.index = 0
        self.use_intraattn = False
        self.disable_store()

    def disable_cfattn(self):
        self.use_cfattn = False        

    # cross frame attention
    def enable_cfattn(self, attn_mask=None):
        if attn_mask:
            if self.attn_mask:
                del self.attn_mask
                torch.cuda.empty_cache()
            self.attn_mask = attn_mask
            self.use_cfattn = True  
        else:
            if self.attn_mask:
                self.use_cfattn = True
            else:
                print('Warning: no valid cross-frame attention parameters available!')
                self.disable_cfattn()       
        
    def disable_interattn(self):
        self.use_interattn = False

    # temporal-guided attention
    def enable_interattn(self, interattn_paras=None):
        if interattn_paras:
            if self.interattn_paras:
                del self.interattn_paras
                torch.cuda.empty_cache()
            self.interattn_paras = interattn_paras
            self.use_interattn = True
        else:
            if self.interattn_paras:
                self.use_interattn = True
            else:
                print('Warning: no valid temporal-guided attention parameters available!')
                self.disable_interattn()
    
    def disable_controller(self):
        self.disable_intraattn()
        self.disable_interattn()
        self.disable_cfattn()
    
    def enable_controller(self, interattn_paras=None, attn_mask=None):
        self.enable_intraattn()
        self.enable_interattn(interattn_paras)
        self.enable_cfattn(attn_mask)    
    
    def forward(self, context):
        if self.store:
            self.stored_attn['decoder_attn'].append(context.detach())
        if self.use_intraattn and len(self.stored_attn['decoder_attn']) > 0:
            tmp = self.stored_attn['decoder_attn'][self.index]
            self.index = self.index + 1
            if self.index >= len(self.stored_attn['decoder_attn']):
                self.index = 0
                self.disable_store()
            return tmp
        return context
    
    def __call__(self, context):
        context = self.forward(context)
        return context


#import xformers
#import importlib
class FRESCOAttnProcessor2_0:
    """
    Hack self attention to FRESCO-based attention
    * adding spatial-guided attention
    * adding temporal-guided attention
    * adding cross-frame attention
    
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    Usage
    frescoProc = FRESCOAttnProcessor2_0(2, attn_mask)
    attnProc = AttnProcessor2_0()
    
    attn_processor_dict = {}
    for k in pipe.unet.attn_processors.keys():
        if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"):
            attn_processor_dict[k] = frescoProc
        else:
            attn_processor_dict[k] = attnProc
    pipe.unet.set_attn_processor(attn_processor_dict)
    """

    def __init__(self, unet_chunk_size=2, controller=None):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
        self.unet_chunk_size = unet_chunk_size
        self.controller = controller
            
    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
    ):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        crossattn = False
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
            if self.controller and self.controller.store:
                self.controller(hidden_states.detach().clone())
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
            
        # BC * HW * 8D
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        
        query_raw, key_raw = None, None
        if self.controller and self.controller.use_interattn and (not crossattn):
            query_raw, key_raw = query.clone(), key.clone()

        inner_dim = key.shape[-1] # 8D
        head_dim = inner_dim // attn.heads # D
        
        '''for efficient cross-frame attention'''
        if self.controller and self.controller.use_cfattn and (not crossattn):
            video_length = key.size()[0] // self.unet_chunk_size
            former_frame_index = [0] * video_length
            attn_mask = None
            if self.controller.attn_mask is not None:
                for m in self.controller.attn_mask:
                    if m.shape[1] == key.shape[1]:
                        attn_mask = m
            # BC * HW * 8D --> B * C * HW * 8D
            key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
            # B * C * HW * 8D --> B * C * HW * 8D
            if attn_mask is None:
                key = key[:, former_frame_index]
            else:
                key = repeat(key[:, attn_mask], "b d c -> b f d c", f=video_length)
            # B * C * HW * 8D --> BC * HW * 8D 
            key = rearrange(key, "b f d c -> (b f) d c").detach()
            value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
            if attn_mask is None:
                value = value[:, former_frame_index]
            else:
                value = repeat(value[:, attn_mask], "b d c -> b f d c", f=video_length)              
            value = rearrange(value, "b f d c -> (b f) d c").detach()
        
        # BC * HW * 8D --> BC * HW * 8 * D --> BC * 8 * HW * D
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        # BC * 8 * HW2 * D
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        # BC * 8 * HW2 * D2
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        
        '''for spatial-guided intra-frame attention'''
        if self.controller and self.controller.use_intraattn and (not crossattn): 
            ref_hidden_states = self.controller(None)
            assert ref_hidden_states.shape == encoder_hidden_states.shape
            query_ = attn.to_q(ref_hidden_states)
            key_ = attn.to_k(ref_hidden_states) 
            
            ''' 
            # for xformers implementation 
            if importlib.util.find_spec("xformers") is not None:
                # BC * HW * 8D --> BC * HW * 8 * D
                query_ = rearrange(query_, "b d (h c) -> b d h c", h=attn.heads)
                key_ = rearrange(key_, "b d (h c) -> b d h c", h=attn.heads)
                # BC * 8 * HW * D --> 8BC * HW * D
                query = rearrange(query, "b h d c -> b d h c")
                query = xformers.ops.memory_efficient_attention(
                    query_, key_ * self.sattn_scale_factor, query, 
                    attn_bias=torch.eye(query_.size(1), key_.size(1), 
                    dtype=query.dtype, device=query.device) * self.bias_weight, op=None
                )
                query = rearrange(query, "b d h c -> b h d c").detach()
            '''
            # BC * 8 * HW * D
            query_ = query_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            key_ = key_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            query = F.scaled_dot_product_attention(
                query_, key_ * self.controller.intraattn_scale_factor, query, 
                attn_mask = torch.eye(query_.size(-2), key_.size(-2), 
                                      dtype=query.dtype, device=query.device) * self.controller.intraattn_bias,
            ).detach()
            #print('intra: ', GPU.getGPUs()[1].memoryUsed)
            del query_, key_
            torch.cuda.empty_cache()
        
        '''
        # for xformers implementation
        if importlib.util.find_spec("xformers") is not None:
            hidden_states = xformers.ops.memory_efficient_attention(
                    rearrange(query, "b h d c -> b d h c"), rearrange(key, "b h d c -> b d h c"), 
                    rearrange(value, "b h d c -> b d h c"), 
                    attn_bias=attention_mask, op=None
                )
            hidden_states = rearrange(hidden_states, "b d h c -> b h d c", h=attn.heads)
        '''
        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        # output: BC * 8 * HW * D2      
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        #print('cross: ', GPU.getGPUs()[1].memoryUsed)
        
        '''for temporal-guided inter-frame attention (FLATTEN)'''
        if self.controller and self.controller.use_interattn and (not crossattn):
            del query, key, value
            torch.cuda.empty_cache()
            bwd_mapping = None
            fwd_mapping = None
            flattn_mask = None
            for i, f in enumerate(self.controller.interattn_paras['fwd_mappings']):
                if f.shape[2] == hidden_states.shape[2]:
                    fwd_mapping = f
                    bwd_mapping = self.controller.interattn_paras['bwd_mappings'][i]
                    interattn_mask = self.controller.interattn_paras['interattn_masks'][i]
            video_length = key_raw.size()[0] // self.unet_chunk_size
            # BC * HW * 8D --> C * 8BD * HW
            key = rearrange(key_raw, "(b f) d c -> f (b c) d", f=video_length)
            query = rearrange(query_raw, "(b f) d c -> f (b c) d", f=video_length)
            # BC * 8 * HW * D --> C * 8BD * HW
            #key = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) ########
            #query = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) #######
            
            value = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length)
            key = torch.gather(key, 2, fwd_mapping.expand(-1,key.shape[1],-1))
            query = torch.gather(query, 2, fwd_mapping.expand(-1,query.shape[1],-1))
            value = torch.gather(value, 2, fwd_mapping.expand(-1,value.shape[1],-1))
            # C * 8BD * HW --> BHW, C, 8D
            key = rearrange(key, "f (b c) d -> (b d) f c", b=self.unet_chunk_size)
            query = rearrange(query, "f (b c) d -> (b d) f c", b=self.unet_chunk_size)
            value = rearrange(value, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) 
            '''
            # for xformers implementation 
            if importlib.util.find_spec("xformers") is not None:
                # BHW * C * 8D --> BHW * C * 8 * D
                query = rearrange(query, "b d (h c) -> b d h c", h=attn.heads)
                key = rearrange(key, "b d (h c) -> b d h c", h=attn.heads)
                value = rearrange(value, "b d (h c) -> b d h c", h=attn.heads)
                B, D, C, _ = flattn_mask.shape
                C1 = int(np.ceil(C / 4) * 4)
                attn_bias = torch.zeros(B, D, C, C1, dtype=value.dtype, device=value.device) # HW * 1 * C * C
                attn_bias[:,:,:,:C].masked_fill_(interattn_mask.logical_not(), float("-inf")) # BHW * C * C
                hidden_states_ = xformers.ops.memory_efficient_attention(
                    query, key * self.controller.interattn_scale_factor, value, 
                    attn_bias=attn_bias.squeeze(1).repeat(self.unet_chunk_size*attn.heads,1,1)[:,:,:C], op=None
                )
                hidden_states_ = rearrange(hidden_states_, "b d h c -> b h d c", h=attn.heads).detach()
            '''
            # BHW * C * 8D --> BHW * C * 8 * D--> BHW * 8 * C * D
            query = query.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach()
            key = key.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach()
            value = value.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach()
            hidden_states_ = F.scaled_dot_product_attention(
                query, key * self.controller.interattn_scale_factor, value, 
                attn_mask = (interattn_mask.repeat(self.unet_chunk_size,1,1,1))#.to(query.dtype)-1.0) * 1e6 -
                #torch.eye(interattn_mask.shape[2]).to(query.device).to(query.dtype) * 1e4,
            )
                
            # BHW * 8 * C * D --> C * 8BD * HW
            hidden_states_ = rearrange(hidden_states_, "(b d) h f c -> f (b h c) d", b=self.unet_chunk_size)
            hidden_states_ = torch.gather(hidden_states_, 2, bwd_mapping.expand(-1,hidden_states_.shape[1],-1)).detach()
            # C * 8BD * HW --> BC * 8 * HW * D
            hidden_states = rearrange(hidden_states_, "f (b h c) d -> (b f) h d c", b=self.unet_chunk_size, h=attn.heads)
            #print('inter: ', GPU.getGPUs()[1].memoryUsed)
            
        # BC * 8 * HW * D --> BC * HW * 8D
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


def apply_FRESCO_attn(pipe):
    """
    Apply FRESCO-guided attention to a StableDiffusionPipeline
    """    
    frescoProc = FRESCOAttnProcessor2_0(2, AttentionControl())
    attnProc = AttnProcessor2_0()
    attn_processor_dict = {}
    for k in pipe.unet.attn_processors.keys():
        if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"):
            attn_processor_dict[k] = frescoProc
        else:
            attn_processor_dict[k] = attnProc
    pipe.unet.set_attn_processor(attn_processor_dict)
    return frescoProc
    

"""
==========================================================================
PART II - FRESCO-based optimization
* optimize_feature(): function to optimze latent feature 
* my_forward(): hacked pipe.unet.forward(), adding feature optimization
* apply_FRESCO_opt(): function to apply FRESCO-based optimization to a StableDiffusionPipeline
* disable_FRESCO_opt(): function to disable the FRESCO-based optimization
==========================================================================
"""

def optimize_feature(sample, flows, occs, correlation_matrix=[], 
                     intra_weight = 1e2, iters=20, unet_chunk_size=2, optimize_temporal = True):
    """
    FRESO-guided latent feature optimization
    * optimize spatial correspondence (match correlation_matrix)
    * optimize temporal correspondence (match warped_image)
    """
    if (flows is None or occs is None or (not optimize_temporal)) and (intra_weight == 0 or len(correlation_matrix) == 0):
        return sample
    # flows=[fwd_flows, bwd_flows]: (N-1)*2*H1*W1
    # occs=[fwd_occs, bwd_occs]: (N-1)*H1*W1
    # sample: 2N*C*H*W
    torch.cuda.empty_cache()
    video_length = sample.shape[0] // unet_chunk_size
    latent = rearrange(sample.to(torch.float32), "(b f) c h w -> b f c h w", f=video_length)
    
    cs = torch.nn.Parameter((latent.detach().clone()))
    optimizer = torch.optim.Adam([cs], lr=0.2)

    # unify resolution
    if flows is not None and occs is not None:
        scale = sample.shape[2] * 1.0 / flows[0].shape[2]
        kernel = int(1 / scale)
        bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode='bilinear').repeat(unet_chunk_size,1,1,1)
        bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel).repeat(unet_chunk_size,1,1,1) # 2(N-1)*1*H1*W1
        fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode='bilinear').repeat(unet_chunk_size,1,1,1)
        fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel).repeat(unet_chunk_size,1,1,1) # 2(N-1)*1*H1*W1
        # match frame 0,1,2,3 and frame 1,2,3,0
        reshuffle_list = list(range(1,video_length))+[0]
        
    # attention_probs is the GRAM matrix of the normalized feature 
    attention_probs = None
    for tmp in correlation_matrix:
        if sample.shape[2] * sample.shape[3] == tmp.shape[1]:
            attention_probs = tmp # 2N*HW*HW
            break
     
    n_iter=[0]
    while n_iter[0] < iters:
        def closure():
            optimizer.zero_grad()
            
            loss = 0

            # temporal consistency loss 
            if optimize_temporal and flows is not None and occs is not None:
                c1 = rearrange(cs[:,:], "b f c h w -> (b f) c h w")
                c2 = rearrange(cs[:,reshuffle_list], "b f c h w -> (b f) c h w")
                warped_image1 = flow_warp(c1, bwd_flow_)
                warped_image2 = flow_warp(c2, fwd_flow_)
                loss = (abs((c2-warped_image1)*(1-bwd_occ_)) + abs((c1-warped_image2)*(1-fwd_occ_))).mean() * 2
                
            # spatial consistency loss
            if attention_probs is not None and intra_weight > 0:
                cs_vector = rearrange(cs, "b f c h w -> (b f) (h w) c")
                #attention_scores = torch.bmm(cs_vector, cs_vector.transpose(-1, -2))
                #cs_attention_probs = attention_scores.softmax(dim=-1)
                cs_vector = cs_vector / ((cs_vector ** 2).sum(dim=2, keepdims=True) ** 0.5)
                cs_attention_probs = torch.bmm(cs_vector, cs_vector.transpose(-1, -2))
                tmp = F.l1_loss(cs_attention_probs, attention_probs) * intra_weight
                loss = tmp + loss
                
            loss.backward()
            n_iter[0]+=1
            
            
            if False: # for debug
                print('Iteration: %d, loss: %f'%(n_iter[0]+1, loss.data.mean()))
            return loss
        optimizer.step(closure)

    torch.cuda.empty_cache()
    return adaptive_instance_normalization(rearrange(cs.data.to(sample.dtype), "b f c h w -> (b f) c h w"), sample)


def my_forward(self, steps = [], layers = [0,1,2,3], flows = None, occs = None, 
               correlation_matrix=[], intra_weight = 1e2, iters=20, optimize_temporal = True, saliency = None):
    """
    Hacked pipe.unet.forward()
    copied from https://github.com/huggingface/diffusers/blob/v0.19.3/src/diffusers/models/unet_2d_condition.py#L700
    if you are using a new version of diffusers, please copy the source code and modify it accordingly (find [HACK] in the code)
    * restore and return the decoder features
    * optimize the decoder features
    * perform background smoothing
    """    
    def forward(
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        class_labels: Optional[torch.Tensor] = None,
        timestep_cond: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
        r"""
        The [`UNet2DConditionModel`] forward method.

        Args:
            sample (`torch.FloatTensor`):
                The noisy input tensor with the following shape `(batch, channel, height, width)`.
            timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.FloatTensor`):
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
            encoder_attention_mask (`torch.Tensor`):
                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
                which adds large negative values to the attention scores corresponding to "discard" tokens.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
                a `tuple` is returned where the first element is the sample tensor.
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # `Timesteps` does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=sample.dtype)

        emb = self.time_embedding(t_emb, timestep_cond)
        aug_emb = None

        if self.class_embedding is not None:
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)

            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb

        if self.config.addition_embed_type == "text":
            aug_emb = self.add_embedding(encoder_hidden_states)
        elif self.config.addition_embed_type == "text_image":
            # Kandinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )

            image_embs = added_cond_kwargs.get("image_embeds")
            text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
            aug_emb = self.add_embedding(text_embs, image_embs)
        elif self.config.addition_embed_type == "text_time":
            # SDXL - style
            if "text_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
                )
            text_embeds = added_cond_kwargs.get("text_embeds")
            if "time_ids" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
                )
            time_ids = added_cond_kwargs.get("time_ids")
            time_embeds = self.add_time_proj(time_ids.flatten())
            time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))

            add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
            add_embeds = add_embeds.to(emb.dtype)
            aug_emb = self.add_embedding(add_embeds)
        elif self.config.addition_embed_type == "image":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            aug_emb = self.add_embedding(image_embs)
        elif self.config.addition_embed_type == "image_hint":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            hint = added_cond_kwargs.get("hint")
            aug_emb, hint = self.add_embedding(image_embs, hint)
            sample = torch.cat([sample, hint], dim=1)

        emb = emb + aug_emb if aug_emb is not None else emb

        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
            # Kadinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )

            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(image_embeds)
        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down

        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
        is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None

        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                # For t2i-adapter CrossAttnDownBlock2D
                additional_residuals = {}
                if is_adapter and len(down_block_additional_residuals) > 0:
                    additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)

                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                    encoder_attention_mask=encoder_attention_mask,
                    **additional_residuals,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

                if is_adapter and len(down_block_additional_residuals) > 0:
                    sample += down_block_additional_residuals.pop(0)
            down_block_res_samples += res_samples

        if is_controlnet:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

        # 4. mid
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
                encoder_attention_mask=encoder_attention_mask,
            )

        if is_controlnet:
            sample = sample + mid_block_additional_residual
        
        # 5. up
        '''
        [HACK] restore the decoder features in up_samples
        '''
        up_samples = ()
        #down_samples = ()
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            '''
            [HACK] restore the decoder features in up_samples
            [HACK] optimize the decoder features
            [HACK] perform background smoothing
            '''
            if i in layers:
                up_samples += (sample, )
            if timestep in steps and i in layers: 
                sample = optimize_feature(sample, flows, occs, correlation_matrix, 
                                          intra_weight, iters, optimize_temporal = optimize_temporal)
                if saliency is not None:
                    sample = warp_tensor(sample, flows, occs, saliency, 2)
            
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )

        # 6. post-process
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        '''
        [HACK] return the output feature as well as the decoder features
        '''        
        if not return_dict:
            return (sample, ) + up_samples

        return UNet2DConditionOutput(sample=sample)
    
    return forward    


def apply_FRESCO_opt(pipe, steps = [], layers = [0,1,2,3], flows = None, occs = None, 
               correlation_matrix=[], intra_weight = 1e2, iters=20, optimize_temporal = True, saliency = None):
    """
    Apply FRESCO-based optimization to a StableDiffusionPipeline
    """  
    pipe.unet.forward = my_forward(pipe.unet, steps, layers, flows, occs, 
               correlation_matrix, intra_weight, iters, optimize_temporal, saliency)

def disable_FRESCO_opt(pipe):
    """
    Disable the FRESCO-based optimization
    """  
    apply_FRESCO_opt(pipe)


"""
=====================================================================================
PART III - Prepare parameters for FRESCO-guided attention/optimization 
* get_intraframe_paras(): get parameters for spatial-guided attention/optimization 
* get_flow_and_interframe_paras(): get parameters for temporal-guided attention/optimization 
=====================================================================================
"""

@torch.no_grad()
def get_intraframe_paras(pipe, imgs, frescoProc, 
                         prompt_embeds, do_classifier_free_guidance=True, seed=0):
    """
    Get parameters for spatial-guided attention and optimization
    * perform one step denoising 
    * collect attention feature, stored in frescoProc.controller.stored_attn['decoder_attn']
    * compute the gram matrix of the normalized feature for spatial consistency loss
    """

    noise_scheduler = pipe.scheduler 
    timestep = noise_scheduler.timesteps[-1]
    device = pipe._execution_device
    generator = torch.Generator(device=device).manual_seed(seed)
    B, C, H, W = imgs.shape
    
    frescoProc.controller.disable_controller()
    disable_FRESCO_opt(pipe)
    frescoProc.controller.clear_store()
    frescoProc.controller.enable_store()
    
    latents = pipe.prepare_latents(
        B,
        pipe.unet.config.in_channels,
        H,
        W,
        prompt_embeds.dtype,
        device,
        generator,
        latents = None,
    )

    latent_x0 = pipe.vae.config.scaling_factor * pipe.vae.encode(imgs.to(pipe.unet.dtype)).latent_dist.sample()
    latents = noise_scheduler.add_noise(latent_x0, latents, timestep).detach()

    latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents 
    model_output = pipe.unet(
        latent_model_input,
        timestep,
        encoder_hidden_states=prompt_embeds,
        cross_attention_kwargs=None,
        return_dict=False,
    )
    
    frescoProc.controller.disable_store()

    # gram matrix of the normalized feature for spatial consistency loss
    correlation_matrix = []
    for tmp in model_output[1:]:
        latent_vector = rearrange(tmp, "b c h w -> b (h w) c")
        latent_vector = latent_vector / ((latent_vector ** 2).sum(dim=2, keepdims=True) ** 0.5)
        attention_probs = torch.bmm(latent_vector, latent_vector.transpose(-1, -2))
        correlation_matrix += [attention_probs.detach().clone().to(torch.float32)]
        del attention_probs, latent_vector, tmp
    del model_output    
    
    gc.collect()
    torch.cuda.empty_cache()

    return correlation_matrix


@torch.no_grad()
def get_flow_and_interframe_paras(flow_model, imgs, visualize_pipeline=False):
    """
    Get parameters for temporal-guided attention and optimization
    * predict optical flow and occlusion mask
    * compute pixel index correspondence for FLATTEN
    """
    images = torch.stack([torch.from_numpy(img).permute(2, 0, 1).float() for img in imgs], dim=0).cuda()
    imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0)
    
    reshuffle_list = list(range(1,len(images)))+[0]
    
    results_dict = flow_model(images, images[reshuffle_list], attn_splits_list=[2], 
                              corr_radius_list=[-1], prop_radius_list=[-1], pred_bidir_flow=True)
    flow_pr = results_dict['flow_preds'][-1]  # [2*B, 2, H, W]
    fwd_flows, bwd_flows = flow_pr.chunk(2)   # [B, 2, H, W]
    fwd_occs, bwd_occs = forward_backward_consistency_check(fwd_flows, bwd_flows) # [B, H, W]
    
    warped_image1 = flow_warp(images, bwd_flows)
    bwd_occs = torch.clamp(bwd_occs + (abs(images[reshuffle_list]-warped_image1).mean(dim=1)>255*0.25).float(), 0 ,1)
    
    warped_image2 = flow_warp(images[reshuffle_list], fwd_flows)
    fwd_occs = torch.clamp(fwd_occs + (abs(images-warped_image2).mean(dim=1)>255*0.25).float(), 0 ,1)    
    
    if visualize_pipeline:
        print('visualized occlusion masks based on optical flows')
        viz = torchvision.utils.make_grid(imgs_torch * (1-fwd_occs.unsqueeze(1)), len(images), 1)
        visualize(viz.cpu(), 90)
        viz = torchvision.utils.make_grid(imgs_torch[reshuffle_list] * (1-bwd_occs.unsqueeze(1)), len(images), 1)
        visualize(viz.cpu(), 90) 
        
    attn_mask = []
    for scale in [8.0, 16.0, 32.0]:
        bwd_occs_ = F.interpolate(bwd_occs[:-1].unsqueeze(1), scale_factor=1./scale, mode='bilinear')
        attn_mask += [torch.cat((bwd_occs_[0:1].reshape(1,-1)>-1, bwd_occs_.reshape(bwd_occs_.shape[0],-1)>0.5), dim=0)]   
        
    fwd_mappings = []
    bwd_mappings = []
    interattn_masks = []
    for scale in [8.0, 16.0]:
        fwd_mapping, bwd_mapping, interattn_mask = get_mapping_ind(bwd_flows, bwd_occs, imgs_torch, scale=scale)
        fwd_mappings += [fwd_mapping]
        bwd_mappings += [bwd_mapping]
        interattn_masks += [interattn_mask]  
    
    interattn_paras = {}
    interattn_paras['fwd_mappings'] = fwd_mappings
    interattn_paras['bwd_mappings'] = bwd_mappings
    interattn_paras['interattn_masks'] = interattn_masks    

    gc.collect()
    torch.cuda.empty_cache()
    
    return [fwd_flows, bwd_flows], [fwd_occs, bwd_occs], attn_mask, interattn_paras