File size: 10,220 Bytes
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import torch.nn as nn
import math
# import torch.utils.model_zoo as model_zoo
import torch
import numpy as np
import torch.nn.functional as F
affine_par = True


# def outS(i):
#     i = int(i)
#     i = (i+1)/2
#     i = int(np.ceil((i+1)/2.0))
#     i = (i+1)/2
#     return i
def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes, affine = affine_par)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes, affine = affine_par)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1,  dilation_ = 1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change
        self.bn1 = nn.BatchNorm2d(planes,affine = affine_par)
        for i in self.bn1.parameters():
            i.requires_grad = False
        padding = 1
        if dilation_ == 2:
            padding = 2
        elif dilation_ == 4:
            padding = 4
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change
                               padding=padding, bias=False, dilation = dilation_)
        self.bn2 = nn.BatchNorm2d(planes,affine = affine_par)
        for i in self.bn2.parameters():
            i.requires_grad = False
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4, affine = affine_par)
        for i in self.bn3.parameters():
            i.requires_grad = False
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride



    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out





class ResNet(nn.Module):
    def __init__(self, block, layers):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64,affine = affine_par)
        for i in self.bn1.parameters():
            i.requires_grad = False
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        # self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation__ = 2)
        # self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation__ = 4)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation__ = 2)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, 0.01)
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
        #        for i in m.parameters():
        #            i.requires_grad = False

    def _make_layer(self, block, planes, blocks, stride=1,dilation__ = 1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion or dilation__ == 2 or dilation__ == 4:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion,affine = affine_par),
            )
        for i in downsample._modules['1'].parameters():
            i.requires_grad = False
        layers = []
        layers.append(block(self.inplanes, planes, stride,dilation_=dilation__, downsample = downsample ))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes,dilation_=dilation__))

        return nn.Sequential(*layers)
    # def _make_pred_layer(self,block, dilation_series, padding_series,NoLabels):
    # return block(dilation_series,padding_series,NoLabels)

    def forward(self, x):
        tmp_x = []
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        tmp_x.append(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        tmp_x.append(x)
        x = self.layer2(x)
        tmp_x.append(x)
        x = self.layer3(x)
        tmp_x.append(x)
        x = self.layer4(x)
        tmp_x.append(x)

        return tmp_x



class ResNet_locate(nn.Module):
    def __init__(self, block, layers):
        super(ResNet_locate,self).__init__()
        self.resnet = ResNet(block, layers)
        self.in_planes = 512
        self.out_planes = [512, 256, 256, 128]

        self.ppms_pre = nn.Conv2d(2048, self.in_planes, 1, 1, bias=False)
        ppms, infos = [], []
        for ii in [1, 3, 5]:
            ppms.append(nn.Sequential(nn.AdaptiveAvgPool2d(ii), nn.Conv2d(self.in_planes, self.in_planes, 1, 1, bias=False), nn.ReLU(inplace=True)))
        self.ppms = nn.ModuleList(ppms)

        self.ppm_cat = nn.Sequential(nn.Conv2d(self.in_planes * 4, self.in_planes, 3, 1, 1, bias=False), nn.ReLU(inplace=True))
        # self.ppm_score = nn.Conv2d(self.in_planes, 1, 1, 1)
        for ii in self.out_planes:
            infos.append(nn.Sequential(nn.Conv2d(self.in_planes, ii, 3, 1, 1, bias=False), nn.ReLU(inplace=True)))
        self.infos = nn.ModuleList(infos)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, 0.01)
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def load_pretrained_model(self, model):
        self.resnet.load_state_dict(model)

    def forward(self, x):
        x_size = x.size()[2:]
        xs = self.resnet(x)

        xs_1 = self.ppms_pre(xs[-1])
        xls = [xs_1]
        for k in range(len(self.ppms)):
            xls.append(F.interpolate(self.ppms[k](xs_1), xs_1.size()[2:], mode='bilinear', align_corners=True))
        xls = self.ppm_cat(torch.cat(xls, dim=1))
        top_score = None
        # top_score = F.interpolate(self.ppm_score(xls), x_size, mode='bilinear', align_corners=True)

        infos = []
        for k in range(len(self.infos)):
            infos.append(self.infos[k](F.interpolate(xls, xs[len(self.infos) - 1 - k].size()[2:], mode='bilinear', align_corners=True)))

        return xs, top_score, infos

class BottleneckEZ(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1,  dilation_ = 1, downsample=None):
        super(BottleneckEZ, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change
        # self.bn1 = nn.BatchNorm2d(planes,affine = affine_par)
        # for i in self.bn1.parameters():
        #     i.requires_grad = False
        padding = 1
        if dilation_ == 2:
            padding = 2
        elif dilation_ == 4:
            padding = 4
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change
                               padding=padding, bias=False, dilation = dilation_)
        # self.bn2 = nn.BatchNorm2d(planes,affine = affine_par)
        # for i in self.bn2.parameters():
        #     i.requires_grad = False
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        # self.bn3 = nn.BatchNorm2d(planes * 4, affine = affine_par)
        # for i in self.bn3.parameters():
        #     i.requires_grad = False
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride



    def forward(self, x):
        residual = x

        out = self.conv1(x)
        # out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        # out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        # out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out



def resnet50(pretrained=False):
    """Constructs a ResNet-50 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on Places
    """
    # model = ResNet(Bottleneck, [3, 4, 6, 3])
    model = ResNet(Bottleneck, [3, 4, 6, 3])
    if pretrained:
        model.load_state_dict(load_url(model_urls['resnet50']), strict=False)
    return model

def resnet101(pretrained=False):
    """Constructs a ResNet-101 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    # model = ResNet(Bottleneck, [3, 4, 23, 3])
    model = ResNet_locate(Bottleneck, [3, 4, 23, 3])
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
    return model