File size: 9,890 Bytes
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import argparse
import os
import platform
import struct
import subprocess
import time
from typing import List

import cv2
import numpy as np
import torch.multiprocessing as mp
from numba import njit

import sys
sys.path.append("./src/ebsynth/")
import blender.histogram_blend as histogram_blend
from blender.guide import (BaseGuide, ColorGuide, EdgeGuide, PositionalGuide,
                           TemporalGuide)
from blender.poisson_fusion import poisson_fusion
from blender.video_sequence import VideoSequence
from flow.flow_utils import flow_calc
from src.video_util import frame_to_video

OPEN_EBSYNTH_LOG = False
MAX_PROCESS = 8

os_str = platform.system()

if os_str == 'Windows':
    ebsynth_bin = '.\\src\\ebsynth\\deps\\ebsynth\\bin\\ebsynth.exe'
elif os_str == 'Linux':
    ebsynth_bin = './src/ebsynth/deps/ebsynth/bin/ebsynth'
elif os_str == 'Darwin':
    ebsynth_bin = './src/ebsynth/deps/ebsynth/bin/ebsynth.app'
else:
    print('Cannot recognize OS. Run Ebsynth failed.')
    exit(0)


@njit
def g_error_mask_loop(H, W, dist1, dist2, output, weight1, weight2):
    for i in range(H):
        for j in range(W):
            if weight1 * dist1[i, j] < weight2 * dist2[i, j]:
                output[i, j] = 0
            else:
                output[i, j] = 1
            if weight1 == 0:
                output[i, j] = 0
            elif weight2 == 0:
                output[i, j] = 1


def g_error_mask(dist1, dist2, weight1=1, weight2=1):
    H, W = dist1.shape
    output = np.empty_like(dist1, dtype=np.byte)
    g_error_mask_loop(H, W, dist1, dist2, output, weight1, weight2)
    return output


def create_sequence(base_dir, key_ind, key_dir):
    sequence = VideoSequence(base_dir, key_ind, 'video', key_dir,
                             'tmp', '%04d.png', '%04d.png')
    return sequence


def process_one_sequence(i, video_sequence: VideoSequence):
    interval = video_sequence.interval(i)
    for is_forward in [True, False]:
        input_seq = video_sequence.get_input_sequence(i, is_forward)
        output_seq = video_sequence.get_output_sequence(i, is_forward)
        flow_seq = video_sequence.get_flow_sequence(i, is_forward)
        key_img_id = i if is_forward else i + 1
        key_img = video_sequence.get_key_img(key_img_id)
        for j in range(interval - 1):
            i1 = cv2.imread(input_seq[j])
            i2 = cv2.imread(input_seq[j + 1])
            flow_calc.get_flow(i1, i2, flow_seq[j])

        guides: List[BaseGuide] = [
            ColorGuide(input_seq),
            EdgeGuide(input_seq,
                      video_sequence.get_edge_sequence(i, is_forward)),
            TemporalGuide(key_img, output_seq, flow_seq,
                          video_sequence.get_temporal_sequence(i, is_forward)),
            PositionalGuide(flow_seq,
                            video_sequence.get_pos_sequence(i, is_forward))
        ]
        weights = [6, 0.5, 0.5, 2]
        for j in range(interval):
            # key frame
            if j == 0:
                img = cv2.imread(key_img)
                cv2.imwrite(output_seq[0], img)
            else:
                cmd = f'{ebsynth_bin} -style {os.path.abspath(key_img)}'
                for g, w in zip(guides, weights):
                    cmd += ' ' + g.get_cmd(j, w)

                cmd += (f' -output {os.path.abspath(output_seq[j])}'
                        ' -searchvoteiters 12 -patchmatchiters 6')
                if OPEN_EBSYNTH_LOG:
                    print(cmd)
                subprocess.run(cmd,
                               shell=True,
                               capture_output=not OPEN_EBSYNTH_LOG)


def process_sequences(i_arr, video_sequence: VideoSequence):
    for i in i_arr:
        process_one_sequence(i, video_sequence)


def run_ebsynth(video_sequence: VideoSequence):

    beg = time.time()

    processes = []
    mp.set_start_method('spawn')

    n_process = min(MAX_PROCESS, video_sequence.n_seq)
    cnt = video_sequence.n_seq // n_process
    remainder = video_sequence.n_seq % n_process

    prev_idx = 0

    for i in range(n_process):
        task_cnt = cnt + 1 if i < remainder else cnt
        i_arr = list(range(prev_idx, prev_idx + task_cnt))
        prev_idx += task_cnt
        p = mp.Process(target=process_sequences, args=(i_arr, video_sequence))
        p.start()
        processes.append(p)
    for p in processes:
        p.join()

    end = time.time()

    print(f'ebsynth: {end-beg}')


@njit
def assemble_min_error_img_loop(H, W, a, b, error_mask, out):
    for i in range(H):
        for j in range(W):
            if error_mask[i, j] == 0:
                out[i, j] = a[i, j]
            else:
                out[i, j] = b[i, j]


def assemble_min_error_img(a, b, error_mask):
    H, W = a.shape[0:2]
    out = np.empty_like(a)
    assemble_min_error_img_loop(H, W, a, b, error_mask, out)
    return out


def load_error(bin_path, img_shape):
    img_size = img_shape[0] * img_shape[1]
    with open(bin_path, 'rb') as fp:
        bytes = fp.read()

    read_size = struct.unpack('q', bytes[:8])
    assert read_size[0] == img_size
    float_res = struct.unpack('f' * img_size, bytes[8:])
    res = np.array(float_res,
                   dtype=np.float32).reshape(img_shape[0], img_shape[1])
    return res


def process_seq(video_sequence: VideoSequence,
                i,
                blend_histogram=True,
                blend_gradient=True):

    key1_img = cv2.imread(video_sequence.get_key_img(i))
    img_shape = key1_img.shape
    interval = video_sequence.interval(i)
    beg_id = video_sequence.get_sequence_beg_id(i)

    oas = video_sequence.get_output_sequence(i)
    obs = video_sequence.get_output_sequence(i, False)

    binas = [x.replace('jpg', 'bin') for x in oas]
    binbs = [x.replace('jpg', 'bin') for x in obs]

    obs = [obs[0]] + list(reversed(obs[1:]))
    inputs = video_sequence.get_input_sequence(i)
    oas = [cv2.imread(x) for x in oas]
    obs = [cv2.imread(x) for x in obs]
    inputs = [cv2.imread(x) for x in inputs]
    flow_seq = video_sequence.get_flow_sequence(i)

    dist1s = []
    dist2s = []
    for i in range(interval - 1):
        bin_a = binas[i + 1]
        bin_b = binbs[i + 1]
        dist1s.append(load_error(bin_a, img_shape))
        dist2s.append(load_error(bin_b, img_shape))

    lb = 0
    ub = 1
    beg = time.time()
    p_mask = None

    # write key img
    blend_out_path = video_sequence.get_blending_img(beg_id)
    cv2.imwrite(blend_out_path, key1_img)

    for i in range(interval - 1):
        c_id = beg_id + i + 1
        blend_out_path = video_sequence.get_blending_img(c_id)

        dist1 = dist1s[i]
        dist2 = dist2s[i]
        oa = oas[i + 1]
        ob = obs[i + 1]
        weight1 = i / (interval - 1) * (ub - lb) + lb
        weight2 = 1 - weight1
        mask = g_error_mask(dist1, dist2, weight1, weight2)
        if p_mask is not None:
            flow_path = flow_seq[i]
            flow = flow_calc.get_flow(inputs[i], inputs[i + 1], flow_path)
            p_mask = flow_calc.warp(p_mask, flow, 'nearest')
            mask = p_mask | mask
        p_mask = mask

        # Save tmp mask
        # out_mask = np.expand_dims(mask, 2)
        # cv2.imwrite(f'mask/mask_{c_id:04d}.jpg', out_mask * 255)

        min_error_img = assemble_min_error_img(oa, ob, mask)
        if blend_histogram:
            hb_res = histogram_blend.blend(oa, ob, min_error_img,
                                           (1 - weight1), (1 - weight2))

        else:
            # hb_res = min_error_img
            tmpa = oa.astype(np.float32)
            tmpb = ob.astype(np.float32)
            hb_res = (1 - weight1) * tmpa + (1 - weight2) * tmpb

        # cv2.imwrite(blend_out_path, hb_res)

        # gradient blend
        if blend_gradient:
            res = poisson_fusion(hb_res, oa, ob, mask)
        else:
            res = hb_res

        cv2.imwrite(blend_out_path, res)
    end = time.time()
    print('others:', end - beg)


def main(args):
    global MAX_PROCESS
    MAX_PROCESS = args.n_proc

    video_sequence = create_sequence(f'{args.name}', args.key_ind, args.key)
    if not args.ne:
        run_ebsynth(video_sequence)
    blend_histogram = True
    blend_gradient = args.ps
    for i in range(video_sequence.n_seq):
        process_seq(video_sequence, i, blend_histogram, blend_gradient)
    if args.output:
        frame_to_video(args.output, video_sequence.blending_dir, args.fps,
                       False)
    if not args.tmp:
        video_sequence.remove_out_and_tmp()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('name', type=str, help='Path to input video')
    parser.add_argument('--output',
                        type=str,
                        default=None,
                        help='Path to output video')
    parser.add_argument('--fps',
                        type=float,
                        default=30,
                        help='The FPS of output video')
    parser.add_argument("--key_ind", type=int, nargs='+', default=[1], help="key frame index")
    parser.add_argument('--key',
                        type=str,
                        default='keys0',
                        help='The subfolder name of stylized key frames')
    parser.add_argument('--n_proc',
                        type=int,
                        default=8,
                        help='The max process count')
    parser.add_argument('-ps',
                        action='store_true',
                        help='Use poisson gradient blending')
    parser.add_argument(
        '-ne',
        action='store_true',
        help='Do not run ebsynth (use previous ebsynth output)')
    parser.add_argument('-tmp',
                        action='store_true',
                        help='Keep temporary output')

    args = parser.parse_args()
    main(args)