Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,890 Bytes
ff715ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import argparse
import os
import platform
import struct
import subprocess
import time
from typing import List
import cv2
import numpy as np
import torch.multiprocessing as mp
from numba import njit
import sys
sys.path.append("./src/ebsynth/")
import blender.histogram_blend as histogram_blend
from blender.guide import (BaseGuide, ColorGuide, EdgeGuide, PositionalGuide,
TemporalGuide)
from blender.poisson_fusion import poisson_fusion
from blender.video_sequence import VideoSequence
from flow.flow_utils import flow_calc
from src.video_util import frame_to_video
OPEN_EBSYNTH_LOG = False
MAX_PROCESS = 8
os_str = platform.system()
if os_str == 'Windows':
ebsynth_bin = '.\\src\\ebsynth\\deps\\ebsynth\\bin\\ebsynth.exe'
elif os_str == 'Linux':
ebsynth_bin = './src/ebsynth/deps/ebsynth/bin/ebsynth'
elif os_str == 'Darwin':
ebsynth_bin = './src/ebsynth/deps/ebsynth/bin/ebsynth.app'
else:
print('Cannot recognize OS. Run Ebsynth failed.')
exit(0)
@njit
def g_error_mask_loop(H, W, dist1, dist2, output, weight1, weight2):
for i in range(H):
for j in range(W):
if weight1 * dist1[i, j] < weight2 * dist2[i, j]:
output[i, j] = 0
else:
output[i, j] = 1
if weight1 == 0:
output[i, j] = 0
elif weight2 == 0:
output[i, j] = 1
def g_error_mask(dist1, dist2, weight1=1, weight2=1):
H, W = dist1.shape
output = np.empty_like(dist1, dtype=np.byte)
g_error_mask_loop(H, W, dist1, dist2, output, weight1, weight2)
return output
def create_sequence(base_dir, key_ind, key_dir):
sequence = VideoSequence(base_dir, key_ind, 'video', key_dir,
'tmp', '%04d.png', '%04d.png')
return sequence
def process_one_sequence(i, video_sequence: VideoSequence):
interval = video_sequence.interval(i)
for is_forward in [True, False]:
input_seq = video_sequence.get_input_sequence(i, is_forward)
output_seq = video_sequence.get_output_sequence(i, is_forward)
flow_seq = video_sequence.get_flow_sequence(i, is_forward)
key_img_id = i if is_forward else i + 1
key_img = video_sequence.get_key_img(key_img_id)
for j in range(interval - 1):
i1 = cv2.imread(input_seq[j])
i2 = cv2.imread(input_seq[j + 1])
flow_calc.get_flow(i1, i2, flow_seq[j])
guides: List[BaseGuide] = [
ColorGuide(input_seq),
EdgeGuide(input_seq,
video_sequence.get_edge_sequence(i, is_forward)),
TemporalGuide(key_img, output_seq, flow_seq,
video_sequence.get_temporal_sequence(i, is_forward)),
PositionalGuide(flow_seq,
video_sequence.get_pos_sequence(i, is_forward))
]
weights = [6, 0.5, 0.5, 2]
for j in range(interval):
# key frame
if j == 0:
img = cv2.imread(key_img)
cv2.imwrite(output_seq[0], img)
else:
cmd = f'{ebsynth_bin} -style {os.path.abspath(key_img)}'
for g, w in zip(guides, weights):
cmd += ' ' + g.get_cmd(j, w)
cmd += (f' -output {os.path.abspath(output_seq[j])}'
' -searchvoteiters 12 -patchmatchiters 6')
if OPEN_EBSYNTH_LOG:
print(cmd)
subprocess.run(cmd,
shell=True,
capture_output=not OPEN_EBSYNTH_LOG)
def process_sequences(i_arr, video_sequence: VideoSequence):
for i in i_arr:
process_one_sequence(i, video_sequence)
def run_ebsynth(video_sequence: VideoSequence):
beg = time.time()
processes = []
mp.set_start_method('spawn')
n_process = min(MAX_PROCESS, video_sequence.n_seq)
cnt = video_sequence.n_seq // n_process
remainder = video_sequence.n_seq % n_process
prev_idx = 0
for i in range(n_process):
task_cnt = cnt + 1 if i < remainder else cnt
i_arr = list(range(prev_idx, prev_idx + task_cnt))
prev_idx += task_cnt
p = mp.Process(target=process_sequences, args=(i_arr, video_sequence))
p.start()
processes.append(p)
for p in processes:
p.join()
end = time.time()
print(f'ebsynth: {end-beg}')
@njit
def assemble_min_error_img_loop(H, W, a, b, error_mask, out):
for i in range(H):
for j in range(W):
if error_mask[i, j] == 0:
out[i, j] = a[i, j]
else:
out[i, j] = b[i, j]
def assemble_min_error_img(a, b, error_mask):
H, W = a.shape[0:2]
out = np.empty_like(a)
assemble_min_error_img_loop(H, W, a, b, error_mask, out)
return out
def load_error(bin_path, img_shape):
img_size = img_shape[0] * img_shape[1]
with open(bin_path, 'rb') as fp:
bytes = fp.read()
read_size = struct.unpack('q', bytes[:8])
assert read_size[0] == img_size
float_res = struct.unpack('f' * img_size, bytes[8:])
res = np.array(float_res,
dtype=np.float32).reshape(img_shape[0], img_shape[1])
return res
def process_seq(video_sequence: VideoSequence,
i,
blend_histogram=True,
blend_gradient=True):
key1_img = cv2.imread(video_sequence.get_key_img(i))
img_shape = key1_img.shape
interval = video_sequence.interval(i)
beg_id = video_sequence.get_sequence_beg_id(i)
oas = video_sequence.get_output_sequence(i)
obs = video_sequence.get_output_sequence(i, False)
binas = [x.replace('jpg', 'bin') for x in oas]
binbs = [x.replace('jpg', 'bin') for x in obs]
obs = [obs[0]] + list(reversed(obs[1:]))
inputs = video_sequence.get_input_sequence(i)
oas = [cv2.imread(x) for x in oas]
obs = [cv2.imread(x) for x in obs]
inputs = [cv2.imread(x) for x in inputs]
flow_seq = video_sequence.get_flow_sequence(i)
dist1s = []
dist2s = []
for i in range(interval - 1):
bin_a = binas[i + 1]
bin_b = binbs[i + 1]
dist1s.append(load_error(bin_a, img_shape))
dist2s.append(load_error(bin_b, img_shape))
lb = 0
ub = 1
beg = time.time()
p_mask = None
# write key img
blend_out_path = video_sequence.get_blending_img(beg_id)
cv2.imwrite(blend_out_path, key1_img)
for i in range(interval - 1):
c_id = beg_id + i + 1
blend_out_path = video_sequence.get_blending_img(c_id)
dist1 = dist1s[i]
dist2 = dist2s[i]
oa = oas[i + 1]
ob = obs[i + 1]
weight1 = i / (interval - 1) * (ub - lb) + lb
weight2 = 1 - weight1
mask = g_error_mask(dist1, dist2, weight1, weight2)
if p_mask is not None:
flow_path = flow_seq[i]
flow = flow_calc.get_flow(inputs[i], inputs[i + 1], flow_path)
p_mask = flow_calc.warp(p_mask, flow, 'nearest')
mask = p_mask | mask
p_mask = mask
# Save tmp mask
# out_mask = np.expand_dims(mask, 2)
# cv2.imwrite(f'mask/mask_{c_id:04d}.jpg', out_mask * 255)
min_error_img = assemble_min_error_img(oa, ob, mask)
if blend_histogram:
hb_res = histogram_blend.blend(oa, ob, min_error_img,
(1 - weight1), (1 - weight2))
else:
# hb_res = min_error_img
tmpa = oa.astype(np.float32)
tmpb = ob.astype(np.float32)
hb_res = (1 - weight1) * tmpa + (1 - weight2) * tmpb
# cv2.imwrite(blend_out_path, hb_res)
# gradient blend
if blend_gradient:
res = poisson_fusion(hb_res, oa, ob, mask)
else:
res = hb_res
cv2.imwrite(blend_out_path, res)
end = time.time()
print('others:', end - beg)
def main(args):
global MAX_PROCESS
MAX_PROCESS = args.n_proc
video_sequence = create_sequence(f'{args.name}', args.key_ind, args.key)
if not args.ne:
run_ebsynth(video_sequence)
blend_histogram = True
blend_gradient = args.ps
for i in range(video_sequence.n_seq):
process_seq(video_sequence, i, blend_histogram, blend_gradient)
if args.output:
frame_to_video(args.output, video_sequence.blending_dir, args.fps,
False)
if not args.tmp:
video_sequence.remove_out_and_tmp()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('name', type=str, help='Path to input video')
parser.add_argument('--output',
type=str,
default=None,
help='Path to output video')
parser.add_argument('--fps',
type=float,
default=30,
help='The FPS of output video')
parser.add_argument("--key_ind", type=int, nargs='+', default=[1], help="key frame index")
parser.add_argument('--key',
type=str,
default='keys0',
help='The subfolder name of stylized key frames')
parser.add_argument('--n_proc',
type=int,
default=8,
help='The max process count')
parser.add_argument('-ps',
action='store_true',
help='Use poisson gradient blending')
parser.add_argument(
'-ne',
action='store_true',
help='Do not run ebsynth (use previous ebsynth output)')
parser.add_argument('-tmp',
action='store_true',
help='Keep temporary output')
args = parser.parse_args()
main(args)
|