Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,459 Bytes
ff715ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import torch
from collections import OrderedDict
from torch.nn import utils, functional as F
from torch.optim import Adam, SGD
from torch.autograd import Variable
from torch.backends import cudnn
from model import build_model, weights_init
import scipy.misc as sm
import numpy as np
import os
import torchvision.utils as vutils
import cv2
import torch.nn.functional as F
import math
import time
import sys
import PIL.Image
import scipy.io
import os
import logging
EPSILON = 1e-8
p = OrderedDict()
from dataset import get_loader
base_model_cfg = 'resnet'
p['lr_bone'] = 5e-5 # Learning rate resnet:5e-5, vgg:2e-5
p['lr_branch'] = 0.025 # Learning rate
p['wd'] = 0.0005 # Weight decay
p['momentum'] = 0.90 # Momentum
lr_decay_epoch = [15, 24] # [6, 9], now x3 #15
nAveGrad = 10 # Update the weights once in 'nAveGrad' forward passes
showEvery = 50
tmp_path = 'tmp_see'
class Solver(object):
def __init__(self, train_loader, test_loader, config, save_fold=None):
self.train_loader = train_loader
self.test_loader = test_loader
self.config = config
self.save_fold = save_fold
self.mean = torch.Tensor([123.68, 116.779, 103.939]).view(3, 1, 1) / 255.
# inference: choose the side map (see paper)
if config.visdom:
self.visual = Viz_visdom("trueUnify", 1)
self.build_model()
if self.config.pre_trained: self.net.load_state_dict(torch.load(self.config.pre_trained))
if config.mode == 'train':
self.log_output = open("%s/logs/log.txt" % config.save_fold, 'w')
else:
print('Loading pre-trained model from %s...' % self.config.model)
self.net_bone.load_state_dict(torch.load(self.config.model))
self.net_bone.eval()
def print_network(self, model, name):
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(name)
print(model)
print("The number of parameters: {}".format(num_params))
def get_params(self, base_lr):
ml = []
for name, module in self.net_bone.named_children():
print(name)
if name == 'loss_weight':
ml.append({'params': module.parameters(), 'lr': p['lr_branch']})
else:
ml.append({'params': module.parameters()})
return ml
# build the network
def build_model(self):
self.net_bone = build_model(base_model_cfg)
if self.config.cuda:
self.net_bone = self.net_bone.cuda()
self.net_bone.eval() # use_global_stats = True
self.net_bone.apply(weights_init)
if self.config.mode == 'train':
if self.config.load_bone == '':
if base_model_cfg == 'vgg':
self.net_bone.base.load_pretrained_model(torch.load(self.config.vgg))
elif base_model_cfg == 'resnet':
self.net_bone.base.load_state_dict(torch.load(self.config.resnet))
if self.config.load_bone != '': self.net_bone.load_state_dict(torch.load(self.config.load_bone))
self.lr_bone = p['lr_bone']
self.lr_branch = p['lr_branch']
self.optimizer_bone = Adam(filter(lambda p: p.requires_grad, self.net_bone.parameters()), lr=self.lr_bone, weight_decay=p['wd'])
self.print_network(self.net_bone, 'trueUnify bone part')
# update the learning rate
def update_lr(self, rate):
for param_group in self.optimizer.param_groups:
param_group['lr'] = param_group['lr'] * rate
def test(self, test_mode=0):
EPSILON = 1e-8
img_num = len(self.test_loader)
time_t = 0.0
name_t = 'EGNet_ResNet50/'
if not os.path.exists(os.path.join(self.save_fold, name_t)):
os.mkdir(os.path.join(self.save_fold, name_t))
for i, data_batch in enumerate(self.test_loader):
self.config.test_fold = self.save_fold
print(self.config.test_fold)
images_, name, im_size = data_batch['image'], data_batch['name'][0], np.asarray(data_batch['size'])
with torch.no_grad():
images = Variable(images_)
if self.config.cuda:
images = images.cuda()
print(images.size())
time_start = time.time()
up_edge, up_sal, up_sal_f = self.net_bone(images)
torch.cuda.synchronize()
time_end = time.time()
print(time_end - time_start)
time_t = time_t + time_end - time_start
pred = np.squeeze(torch.sigmoid(up_sal_f[-1]).cpu().data.numpy())
multi_fuse = 255 * pred
cv2.imwrite(os.path.join(self.config.test_fold,name_t, name[:-4] + '.png'), multi_fuse)
print("--- %s seconds ---" % (time_t))
print('Test Done!')
# training phase
def train(self):
iter_num = len(self.train_loader.dataset) // self.config.batch_size
aveGrad = 0
F_v = 0
if not os.path.exists(tmp_path):
os.mkdir(tmp_path)
for epoch in range(self.config.epoch):
r_edge_loss, r_sal_loss, r_sum_loss= 0,0,0
self.net_bone.zero_grad()
for i, data_batch in enumerate(self.train_loader):
sal_image, sal_label, sal_edge = data_batch['sal_image'], data_batch['sal_label'], data_batch['sal_edge']
if sal_image.size()[2:] != sal_label.size()[2:]:
print("Skip this batch")
continue
sal_image, sal_label, sal_edge = Variable(sal_image), Variable(sal_label), Variable(sal_edge)
if self.config.cuda:
sal_image, sal_label, sal_edge = sal_image.cuda(), sal_label.cuda(), sal_edge.cuda()
up_edge, up_sal, up_sal_f = self.net_bone(sal_image)
# edge part
edge_loss = []
for ix in up_edge:
edge_loss.append(bce2d_new(ix, sal_edge, reduction='sum'))
edge_loss = sum(edge_loss) / (nAveGrad * self.config.batch_size)
r_edge_loss += edge_loss.data
# sal part
sal_loss1= []
sal_loss2 = []
for ix in up_sal:
sal_loss1.append(F.binary_cross_entropy_with_logits(ix, sal_label, reduction='sum'))
for ix in up_sal_f:
sal_loss2.append(F.binary_cross_entropy_with_logits(ix, sal_label, reduction='sum'))
sal_loss = (sum(sal_loss1) + sum(sal_loss2)) / (nAveGrad * self.config.batch_size)
r_sal_loss += sal_loss.data
loss = sal_loss + edge_loss
r_sum_loss += loss.data
loss.backward()
aveGrad += 1
if aveGrad % nAveGrad == 0:
self.optimizer_bone.step()
self.optimizer_bone.zero_grad()
aveGrad = 0
if i % showEvery == 0:
print('epoch: [%2d/%2d], iter: [%5d/%5d] || Edge : %10.4f || Sal : %10.4f || Sum : %10.4f' % (
epoch, self.config.epoch, i, iter_num, r_edge_loss*(nAveGrad * self.config.batch_size)/showEvery,
r_sal_loss*(nAveGrad * self.config.batch_size)/showEvery,
r_sum_loss*(nAveGrad * self.config.batch_size)/showEvery))
print('Learning rate: ' + str(self.lr_bone))
r_edge_loss, r_sal_loss, r_sum_loss= 0,0,0
if i % 200 == 0:
vutils.save_image(torch.sigmoid(up_sal_f[-1].data), tmp_path+'/iter%d-sal-0.jpg' % i, normalize=True, padding = 0)
vutils.save_image(sal_image.data, tmp_path+'/iter%d-sal-data.jpg' % i, padding = 0)
vutils.save_image(sal_label.data, tmp_path+'/iter%d-sal-target.jpg' % i, padding = 0)
if (epoch + 1) % self.config.epoch_save == 0:
torch.save(self.net_bone.state_dict(), '%s/models/epoch_%d_bone.pth' % (self.config.save_fold, epoch + 1))
if epoch in lr_decay_epoch:
self.lr_bone = self.lr_bone * 0.1
self.optimizer_bone = Adam(filter(lambda p: p.requires_grad, self.net_bone.parameters()), lr=self.lr_bone, weight_decay=p['wd'])
torch.save(self.net_bone.state_dict(), '%s/models/final_bone.pth' % self.config.save_fold)
def bce2d_new(input, target, reduction=None):
assert(input.size() == target.size())
pos = torch.eq(target, 1).float()
neg = torch.eq(target, 0).float()
# ing = ((torch.gt(target, 0) & torch.lt(target, 1))).float()
num_pos = torch.sum(pos)
num_neg = torch.sum(neg)
num_total = num_pos + num_neg
alpha = num_neg / num_total
beta = 1.1 * num_pos / num_total
# target pixel = 1 -> weight beta
# target pixel = 0 -> weight 1-beta
weights = alpha * pos + beta * neg
return F.binary_cross_entropy_with_logits(input, target, weights, reduction=reduction)
|