File size: 9,459 Bytes
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
from collections import OrderedDict
from torch.nn import utils, functional as F
from torch.optim import Adam, SGD
from torch.autograd import Variable
from torch.backends import cudnn
from model import build_model, weights_init
import scipy.misc as sm
import numpy as np
import os
import torchvision.utils as vutils
import cv2
import torch.nn.functional as F
import math
import time
import sys
import PIL.Image
import scipy.io
import os
import logging
EPSILON = 1e-8
p = OrderedDict()

from dataset import get_loader
base_model_cfg = 'resnet'
p['lr_bone'] = 5e-5  # Learning rate resnet:5e-5, vgg:2e-5
p['lr_branch'] = 0.025  # Learning rate
p['wd'] = 0.0005  # Weight decay
p['momentum'] = 0.90  # Momentum
lr_decay_epoch = [15, 24] # [6, 9], now x3 #15
nAveGrad = 10  # Update the weights once in 'nAveGrad' forward passes
showEvery = 50
tmp_path = 'tmp_see'


class Solver(object):
    def __init__(self, train_loader, test_loader, config, save_fold=None):
        self.train_loader = train_loader
        self.test_loader = test_loader
        self.config = config
        self.save_fold = save_fold
        self.mean = torch.Tensor([123.68, 116.779, 103.939]).view(3, 1, 1) / 255.
        # inference: choose the side map (see paper)
        if config.visdom:
            self.visual = Viz_visdom("trueUnify", 1)
        self.build_model()
        if self.config.pre_trained: self.net.load_state_dict(torch.load(self.config.pre_trained))
        if config.mode == 'train':
            self.log_output = open("%s/logs/log.txt" % config.save_fold, 'w')
        else:
            print('Loading pre-trained model from %s...' % self.config.model)
            self.net_bone.load_state_dict(torch.load(self.config.model))
            self.net_bone.eval()

    def print_network(self, model, name):
        num_params = 0
        for p in model.parameters():
            num_params += p.numel()
        print(name)
        print(model)
        print("The number of parameters: {}".format(num_params))

    def get_params(self, base_lr):
        ml = []
        for name, module in self.net_bone.named_children():
            print(name)
            if name == 'loss_weight':
                ml.append({'params': module.parameters(), 'lr': p['lr_branch']})          
            else:
                ml.append({'params': module.parameters()})
        return ml

    # build the network
    def build_model(self):
        self.net_bone = build_model(base_model_cfg)
        if self.config.cuda:
            self.net_bone = self.net_bone.cuda()
            
        self.net_bone.eval()  # use_global_stats = True
        self.net_bone.apply(weights_init)
        if self.config.mode == 'train':
            if self.config.load_bone == '':
                if base_model_cfg == 'vgg':
                    self.net_bone.base.load_pretrained_model(torch.load(self.config.vgg))
                elif base_model_cfg == 'resnet':
                    self.net_bone.base.load_state_dict(torch.load(self.config.resnet))
            if self.config.load_bone != '': self.net_bone.load_state_dict(torch.load(self.config.load_bone))

        self.lr_bone = p['lr_bone']
        self.lr_branch = p['lr_branch']
        self.optimizer_bone = Adam(filter(lambda p: p.requires_grad, self.net_bone.parameters()), lr=self.lr_bone, weight_decay=p['wd'])

        self.print_network(self.net_bone, 'trueUnify bone part')

    # update the learning rate
    def update_lr(self, rate):
        for param_group in self.optimizer.param_groups:
            param_group['lr'] = param_group['lr'] * rate


    def test(self, test_mode=0):
        EPSILON = 1e-8
        img_num = len(self.test_loader)
        time_t = 0.0
        name_t = 'EGNet_ResNet50/'

        if not os.path.exists(os.path.join(self.save_fold, name_t)):             
            os.mkdir(os.path.join(self.save_fold, name_t))
        for i, data_batch in enumerate(self.test_loader):
            self.config.test_fold = self.save_fold
            print(self.config.test_fold)
            images_, name, im_size = data_batch['image'], data_batch['name'][0], np.asarray(data_batch['size'])
            
            with torch.no_grad():
                
                images = Variable(images_)
                if self.config.cuda:
                    images = images.cuda()
                print(images.size())
                time_start = time.time()
                up_edge, up_sal, up_sal_f = self.net_bone(images)
                torch.cuda.synchronize()
                time_end = time.time()
                print(time_end - time_start)
                time_t = time_t + time_end - time_start                              
                pred = np.squeeze(torch.sigmoid(up_sal_f[-1]).cpu().data.numpy())             
                multi_fuse = 255 * pred
                

                
                cv2.imwrite(os.path.join(self.config.test_fold,name_t, name[:-4] + '.png'), multi_fuse)
          
        print("--- %s seconds ---" % (time_t))
        print('Test Done!')

   
    # training phase
    def train(self):
        iter_num = len(self.train_loader.dataset) // self.config.batch_size
        aveGrad = 0
        F_v = 0
        if not os.path.exists(tmp_path): 
            os.mkdir(tmp_path)
        for epoch in range(self.config.epoch):                          
            r_edge_loss, r_sal_loss, r_sum_loss= 0,0,0
            self.net_bone.zero_grad()
            for i, data_batch in enumerate(self.train_loader):
                sal_image, sal_label, sal_edge = data_batch['sal_image'], data_batch['sal_label'], data_batch['sal_edge']
                if sal_image.size()[2:] != sal_label.size()[2:]:
                    print("Skip this batch")
                    continue
                sal_image, sal_label, sal_edge = Variable(sal_image), Variable(sal_label), Variable(sal_edge)
                if self.config.cuda: 
                    sal_image, sal_label, sal_edge = sal_image.cuda(), sal_label.cuda(), sal_edge.cuda()

                up_edge, up_sal, up_sal_f = self.net_bone(sal_image)
                # edge part
                edge_loss = []
                for ix in up_edge:
                    edge_loss.append(bce2d_new(ix, sal_edge, reduction='sum'))
                edge_loss = sum(edge_loss) / (nAveGrad * self.config.batch_size)
                r_edge_loss += edge_loss.data
                # sal part
                sal_loss1= []
                sal_loss2 = []
                for ix in up_sal:
                    sal_loss1.append(F.binary_cross_entropy_with_logits(ix, sal_label, reduction='sum'))

                for ix in up_sal_f:
                    sal_loss2.append(F.binary_cross_entropy_with_logits(ix, sal_label, reduction='sum'))
                sal_loss = (sum(sal_loss1) + sum(sal_loss2)) / (nAveGrad * self.config.batch_size)
              
                r_sal_loss += sal_loss.data
                loss = sal_loss + edge_loss
                r_sum_loss += loss.data
                loss.backward()
                aveGrad += 1

                if aveGrad % nAveGrad == 0:
       
                    self.optimizer_bone.step()
                    self.optimizer_bone.zero_grad()           
                    aveGrad = 0


                if i % showEvery == 0:

                    print('epoch: [%2d/%2d], iter: [%5d/%5d]  ||  Edge : %10.4f  ||  Sal : %10.4f  ||  Sum : %10.4f' % (
                        epoch, self.config.epoch, i, iter_num,  r_edge_loss*(nAveGrad * self.config.batch_size)/showEvery,
                                                                r_sal_loss*(nAveGrad * self.config.batch_size)/showEvery,
                                                                r_sum_loss*(nAveGrad * self.config.batch_size)/showEvery))

                    print('Learning rate: ' + str(self.lr_bone))
                    r_edge_loss, r_sal_loss, r_sum_loss= 0,0,0

                if i % 200 == 0:

                    vutils.save_image(torch.sigmoid(up_sal_f[-1].data), tmp_path+'/iter%d-sal-0.jpg' % i, normalize=True, padding = 0)

                    vutils.save_image(sal_image.data, tmp_path+'/iter%d-sal-data.jpg' % i, padding = 0)
                    vutils.save_image(sal_label.data, tmp_path+'/iter%d-sal-target.jpg' % i, padding = 0)
            
            if (epoch + 1) % self.config.epoch_save == 0:
                torch.save(self.net_bone.state_dict(), '%s/models/epoch_%d_bone.pth' % (self.config.save_fold, epoch + 1))
                
            if epoch in lr_decay_epoch:
                self.lr_bone = self.lr_bone * 0.1  
                self.optimizer_bone = Adam(filter(lambda p: p.requires_grad, self.net_bone.parameters()), lr=self.lr_bone, weight_decay=p['wd'])


        torch.save(self.net_bone.state_dict(), '%s/models/final_bone.pth' % self.config.save_fold)
        
def bce2d_new(input, target, reduction=None):
    assert(input.size() == target.size())
    pos = torch.eq(target, 1).float()
    neg = torch.eq(target, 0).float()
    # ing = ((torch.gt(target, 0) & torch.lt(target, 1))).float()

    num_pos = torch.sum(pos)
    num_neg = torch.sum(neg)
    num_total = num_pos + num_neg

    alpha = num_neg  / num_total
    beta = 1.1 * num_pos  / num_total
    # target pixel = 1 -> weight beta
    # target pixel = 0 -> weight 1-beta
    weights = alpha * pos + beta * neg

    return F.binary_cross_entropy_with_logits(input, target, weights, reduction=reduction)