FRESCO / src /EGNet /dataset.py
SingleZombie
upload files
ff715ca
raw
history blame
11.2 kB
import os
from PIL import Image
import cv2
import torch
from torch.utils import data
from torchvision import transforms
from torchvision.transforms import functional as F
import numbers
import numpy as np
import random
#re_size = (256, 256)
#cr_size = (224, 224)
class ImageDataTrain(data.Dataset):
def __init__(self):
self.sal_root = '/home/liuj/dataset/DUTS/DUTS-TR'
self.sal_source = '/home/liuj/dataset/DUTS/DUTS-TR/train_pair_edge.lst'
with open(self.sal_source, 'r') as f:
self.sal_list = [x.strip() for x in f.readlines()]
self.sal_num = len(self.sal_list)
def __getitem__(self, item):
sal_image = load_image(os.path.join(self.sal_root, self.sal_list[item%self.sal_num].split()[0]))
sal_label = load_sal_label(os.path.join(self.sal_root, self.sal_list[item%self.sal_num].split()[1]))
sal_edge = load_edge_label(os.path.join(self.sal_root, self.sal_list[item%self.sal_num].split()[2]))
sal_image, sal_label, sal_edge = cv_random_flip(sal_image, sal_label, sal_edge)
sal_image = torch.Tensor(sal_image)
sal_label = torch.Tensor(sal_label)
sal_edge = torch.Tensor(sal_edge)
sample = {'sal_image': sal_image, 'sal_label': sal_label, 'sal_edge': sal_edge}
return sample
def __len__(self):
# return max(max(self.edge_num, self.sal_num), self.skel_num)
return self.sal_num
class ImageDataTest(data.Dataset):
def __init__(self, test_mode=1, sal_mode='e'):
if test_mode == 0:
# self.image_root = '/home/liuj/dataset/saliency_test/ECSSD/Imgs/'
# self.image_source = '/home/liuj/dataset/saliency_test/ECSSD/test.lst'
self.image_root = '/home/liuj/dataset/HED-BSDS_PASCAL/HED-BSDS/test/'
self.image_source = '/home/liuj/dataset/HED-BSDS_PASCAL/HED-BSDS/test.lst'
elif test_mode == 1:
if sal_mode == 'e':
self.image_root = '/home/liuj/dataset/saliency_test/ECSSD/Imgs/'
self.image_source = '/home/liuj/dataset/saliency_test/ECSSD/test.lst'
self.test_fold = '/media/ubuntu/disk/Result/saliency/ECSSD/'
elif sal_mode == 'p':
self.image_root = '/home/liuj/dataset/saliency_test/PASCALS/Imgs/'
self.image_source = '/home/liuj/dataset/saliency_test/PASCALS/test.lst'
self.test_fold = '/media/ubuntu/disk/Result/saliency/PASCALS/'
elif sal_mode == 'd':
self.image_root = '/home/liuj/dataset/saliency_test/DUTOMRON/Imgs/'
self.image_source = '/home/liuj/dataset/saliency_test/DUTOMRON/test.lst'
self.test_fold = '/media/ubuntu/disk/Result/saliency/DUTOMRON/'
elif sal_mode == 'h':
self.image_root = '/home/liuj/dataset/saliency_test/HKU-IS/Imgs/'
self.image_source = '/home/liuj/dataset/saliency_test/HKU-IS/test.lst'
self.test_fold = '/media/ubuntu/disk/Result/saliency/HKU-IS/'
elif sal_mode == 's':
self.image_root = '/home/liuj/dataset/saliency_test/SOD/Imgs/'
self.image_source = '/home/liuj/dataset/saliency_test/SOD/test.lst'
self.test_fold = '/media/ubuntu/disk/Result/saliency/SOD/'
elif sal_mode == 'm':
self.image_root = '/home/liuj/dataset/saliency_test/MSRA/Imgs/'
self.image_source = '/home/liuj/dataset/saliency_test/MSRA/test.lst'
elif sal_mode == 'o':
self.image_root = '/home/liuj/dataset/saliency_test/SOC/TestSet/Imgs/'
self.image_source = '/home/liuj/dataset/saliency_test/SOC/TestSet/test.lst'
self.test_fold = '/media/ubuntu/disk/Result/saliency/SOC/'
elif sal_mode == 't':
self.image_root = '/home/liuj/dataset/DUTS/DUTS-TE/DUTS-TE-Image/'
self.image_source = '/home/liuj/dataset/DUTS/DUTS-TE/test.lst'
self.test_fold = '/media/ubuntu/disk/Result/saliency/DUTS/'
elif test_mode == 2:
self.image_root = '/home/liuj/dataset/SK-LARGE/images/test/'
self.image_source = '/home/liuj/dataset/SK-LARGE/test.lst'
with open(self.image_source, 'r') as f:
self.image_list = [x.strip() for x in f.readlines()]
self.image_num = len(self.image_list)
def __getitem__(self, item):
image, im_size = load_image_test(os.path.join(self.image_root, self.image_list[item]))
image = torch.Tensor(image)
return {'image': image, 'name': self.image_list[item%self.image_num], 'size': im_size}
def save_folder(self):
return self.test_fold
def __len__(self):
# return max(max(self.edge_num, self.skel_num), self.sal_num)
return self.image_num
# get the dataloader (Note: without data augmentation, except saliency with random flip)
def get_loader(batch_size, mode='train', num_thread=1, test_mode=0, sal_mode='e'):
shuffle = False
if mode == 'train':
shuffle = True
dataset = ImageDataTrain()
else:
dataset = ImageDataTest(test_mode=test_mode, sal_mode=sal_mode)
data_loader = data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_thread)
return data_loader, dataset
def load_image(pah):
if not os.path.exists(pah):
print('File Not Exists')
im = cv2.imread(pah)
in_ = np.array(im, dtype=np.float32)
# in_ = cv2.resize(in_, im_sz, interpolation=cv2.INTER_CUBIC)
# in_ = in_[:,:,::-1] # only if use PIL to load image
in_ -= np.array((104.00699, 116.66877, 122.67892))
in_ = in_.transpose((2,0,1))
return in_
def load_image_test(pah):
if not os.path.exists(pah):
print('File Not Exists')
im = cv2.imread(pah)
in_ = np.array(im, dtype=np.float32)
im_size = tuple(in_.shape[:2])
# in_ = cv2.resize(in_, (cr_size[1], cr_size[0]), interpolation=cv2.INTER_LINEAR)
# in_ = in_[:,:,::-1] # only if use PIL to load image
in_ -= np.array((104.00699, 116.66877, 122.67892))
in_ = in_.transpose((2,0,1))
return in_, im_size
def load_edge_label(pah):
"""
pixels > 0.5 -> 1
Load label image as 1 x height x width integer array of label indices.
The leading singleton dimension is required by the loss.
"""
if not os.path.exists(pah):
print('File Not Exists')
im = Image.open(pah)
label = np.array(im, dtype=np.float32)
if len(label.shape) == 3:
label = label[:,:,0]
# label = cv2.resize(label, im_sz, interpolation=cv2.INTER_NEAREST)
label = label / 255.
label[np.where(label > 0.5)] = 1.
label = label[np.newaxis, ...]
return label
def load_skel_label(pah):
"""
pixels > 0 -> 1
Load label image as 1 x height x width integer array of label indices.
The leading singleton dimension is required by the loss.
"""
if not os.path.exists(pah):
print('File Not Exists')
im = Image.open(pah)
label = np.array(im, dtype=np.float32)
if len(label.shape) == 3:
label = label[:,:,0]
# label = cv2.resize(label, im_sz, interpolation=cv2.INTER_NEAREST)
label = label / 255.
label[np.where(label > 0.)] = 1.
label = label[np.newaxis, ...]
return label
def load_sal_label(pah):
"""
Load label image as 1 x height x width integer array of label indices.
The leading singleton dimension is required by the loss.
"""
if not os.path.exists(pah):
print('File Not Exists')
im = Image.open(pah)
label = np.array(im, dtype=np.float32)
if len(label.shape) == 3:
label = label[:,:,0]
# label = cv2.resize(label, im_sz, interpolation=cv2.INTER_NEAREST)
label = label / 255.
label = label[np.newaxis, ...]
return label
def load_sem_label(pah):
"""
Load label image as 1 x height x width integer array of label indices.
The leading singleton dimension is required by the loss.
"""
if not os.path.exists(pah):
print('File Not Exists')
im = Image.open(pah)
label = np.array(im, dtype=np.float32)
if len(label.shape) == 3:
label = label[:,:,0]
# label = cv2.resize(label, im_sz, interpolation=cv2.INTER_NEAREST)
# label = label / 255.
label = label[np.newaxis, ...]
return label
def edge_thres_transform(x, thres):
# y0 = torch.zeros(x.size())
y1 = torch.ones(x.size())
x = torch.where(x >= thres, y1, x)
return x
def skel_thres_transform(x, thres):
y0 = torch.zeros(x.size())
y1 = torch.ones(x.size())
x = torch.where(x > thres, y1, y0)
return x
def cv_random_flip(img, label, edge):
flip_flag = random.randint(0, 1)
if flip_flag == 1:
img = img[:,:,::-1].copy()
label = label[:,:,::-1].copy()
edge = edge[:,:,::-1].copy()
return img, label, edge
def cv_random_crop_flip(img, label, resize_size, crop_size, random_flip=True):
def get_params(img_size, output_size):
h, w = img_size
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
if random_flip:
flip_flag = random.randint(0, 1)
img = img.transpose((1,2,0)) # H, W, C
label = label[0,:,:] # H, W
img = cv2.resize(img, (resize_size[1], resize_size[0]), interpolation=cv2.INTER_LINEAR)
label = cv2.resize(label, (resize_size[1], resize_size[0]), interpolation=cv2.INTER_NEAREST)
i, j, h, w = get_params(resize_size, crop_size)
img = img[i:i+h, j:j+w, :].transpose((2,0,1)) # C, H, W
label = label[i:i+h, j:j+w][np.newaxis, ...] # 1, H, W
if flip_flag == 1:
img = img[:,:,::-1].copy()
label = label[:,:,::-1].copy()
return img, label
def random_crop(img, label, size, padding=None, pad_if_needed=True, fill_img=(123, 116, 103), fill_label=0, padding_mode='constant'):
def get_params(img, output_size):
w, h = img.size
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
if isinstance(size, numbers.Number):
size = (int(size), int(size))
if padding is not None:
img = F.pad(img, padding, fill_img, padding_mode)
label = F.pad(label, padding, fill_label, padding_mode)
# pad the width if needed
if pad_if_needed and img.size[0] < size[1]:
img = F.pad(img, (int((1 + size[1] - img.size[0]) / 2), 0), fill_img, padding_mode)
label = F.pad(label, (int((1 + size[1] - label.size[0]) / 2), 0), fill_label, padding_mode)
# pad the height if needed
if pad_if_needed and img.size[1] < size[0]:
img = F.pad(img, (0, int((1 + size[0] - img.size[1]) / 2)), fill_img, padding_mode)
label = F.pad(label, (0, int((1 + size[0] - label.size[1]) / 2)), fill_label, padding_mode)
i, j, h, w = get_params(img, size)
return [F.crop(img, i, j, h, w), F.crop(label, i, j, h, w)]