Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
import cv2 | |
import torch.nn.functional as F | |
from src.utils import * | |
import sys | |
sys.path.append("./src/ebsynth/deps/gmflow/") | |
from gmflow.geometry import flow_warp | |
""" | |
========================================================================== | |
* warp_tensor(): warp and fuse tensors based on optical flow and mask | |
* get_single_mapping_ind(): get pixel index correspondence between two frames | |
* get_mapping_ind(): get pixel index correspondence between consecutive frames within a batch | |
========================================================================== | |
""" | |
def warp_tensor(sample, flows, occs, saliency, unet_chunk_size): | |
""" | |
Warp images or features based on optical flow | |
Fuse the warped imges or features based on occusion masks and saliency map | |
""" | |
scale = sample.shape[2] * 1.0 / flows[0].shape[2] | |
kernel = int(1 / scale) | |
bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode='bilinear') | |
bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel) # (N-1)*1*H1*W1 | |
if scale == 1: | |
bwd_occ_ = Dilate(kernel_size=13, device=sample.device)(bwd_occ_) | |
fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode='bilinear') | |
fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel) # (N-1)*1*H1*W1 | |
if scale == 1: | |
fwd_occ_ = Dilate(kernel_size=13, device=sample.device)(fwd_occ_) | |
scale2 = sample.shape[2] * 1.0 / saliency.shape[2] | |
saliency = F.interpolate(saliency, scale_factor=scale2, mode='bilinear') | |
latent = sample.to(torch.float32) | |
video_length = sample.shape[0] // unet_chunk_size | |
warp_saliency = flow_warp(saliency, bwd_flow_) | |
warp_saliency_ = flow_warp(saliency[0:1], fwd_flow_[video_length-1:video_length]) | |
for j in range(unet_chunk_size): | |
for ii in range(video_length-1): | |
i = video_length * j + ii | |
warped_image = flow_warp(latent[i:i+1], bwd_flow_[ii:ii+1]) | |
mask = (1 - bwd_occ_[ii:ii+1]) * saliency[ii+1:ii+2] * warp_saliency[ii:ii+1] | |
latent[i+1:i+2] = latent[i+1:i+2] * (1-mask) + warped_image * mask | |
i = video_length * j | |
ii = video_length - 1 | |
warped_image = flow_warp(latent[i:i+1], fwd_flow_[ii:ii+1]) | |
mask = (1 - fwd_occ_[ii:ii+1]) * saliency[ii:ii+1] * warp_saliency_ | |
latent[ii+i:ii+i+1] = latent[ii+i:ii+i+1] * (1-mask) + warped_image * mask | |
return latent.to(sample.dtype) | |
def get_single_mapping_ind(bwd_flow, bwd_occ, imgs, scale=1.0): | |
""" | |
FLATTEN: Optical fLow-guided attention (Temoporal-guided attention) | |
Find the correspondence between every pixels in a pair of frames | |
[input] | |
bwd_flow: 1*2*H*W | |
bwd_occ: 1*H*W i.e., f2 = warp(f1, bwd_flow) * bwd_occ | |
imgs: 2*3*H*W i.e., [f1,f2] | |
[output] | |
mapping_ind: pixel index correspondence | |
unlinkedmask: indicate whether a pixel has no correspondence | |
i.e., f2 = f1[mapping_ind] * unlinkedmask | |
""" | |
flows = F.interpolate(bwd_flow, scale_factor=1./scale, mode='bilinear')[0][[1,0]] / scale # 2*H*W | |
_, H, W = flows.shape | |
masks = torch.logical_not(F.interpolate(bwd_occ[None], scale_factor=1./scale, mode='bilinear') > 0.5)[0] # 1*H*W | |
frames = F.interpolate(imgs, scale_factor=1./scale, mode='bilinear').view(2, 3, -1) # 2*3*HW | |
grid = torch.stack(torch.meshgrid([torch.arange(H), torch.arange(W)]), dim=0).to(flows.device) # 2*H*W | |
warp_grid = torch.round(grid + flows) | |
mask = torch.logical_and(torch.logical_and(torch.logical_and(torch.logical_and(warp_grid[0] >= 0, warp_grid[0] < H), | |
warp_grid[1] >= 0), warp_grid[1] < W), masks[0]).view(-1) # HW | |
warp_grid = warp_grid.view(2, -1) # 2*HW | |
warp_ind = (warp_grid[0] * W + warp_grid[1]).to(torch.long) # HW | |
mapping_ind = torch.zeros_like(warp_ind) - 1 # HW | |
for f0ind, f1ind in enumerate(warp_ind): | |
if mask[f0ind]: | |
if mapping_ind[f1ind] == -1: | |
mapping_ind[f1ind] = f0ind | |
else: | |
targetv = frames[0,:,f1ind] | |
pref0ind = mapping_ind[f1ind] | |
prev = frames[1,:,pref0ind] | |
v = frames[1,:,f0ind] | |
if ((prev - targetv)**2).mean() > ((v - targetv)**2).mean(): | |
mask[pref0ind] = False | |
mapping_ind[f1ind] = f0ind | |
else: | |
mask[f0ind] = False | |
unusedind = torch.arange(len(mask)).to(mask.device)[~mask] | |
unlinkedmask = mapping_ind == -1 | |
mapping_ind[unlinkedmask] = unusedind | |
return mapping_ind, unlinkedmask | |
def get_mapping_ind(bwd_flows, bwd_occs, imgs, scale=1.0): | |
""" | |
FLATTEN: Optical fLow-guided attention (Temoporal-guided attention) | |
Find pixel correspondence between every consecutive frames in a batch | |
[input] | |
bwd_flow: (N-1)*2*H*W | |
bwd_occ: (N-1)*H*W | |
imgs: N*3*H*W | |
[output] | |
fwd_mappings: N*1*HW | |
bwd_mappings: N*1*HW | |
flattn_mask: HW*1*N*N | |
i.e., imgs[i,:,fwd_mappings[i]] corresponds to imgs[0] | |
i.e., imgs[i,:,fwd_mappings[i]][:,bwd_mappings[i]] restore the original imgs[i] | |
""" | |
N, H, W = imgs.shape[0], int(imgs.shape[2] // scale), int(imgs.shape[3] // scale) | |
iterattn_mask = torch.ones(H*W, N, N, dtype=torch.bool).to(imgs.device) | |
for i in range(len(imgs)-1): | |
one_mask = torch.ones(N, N, dtype=torch.bool).to(imgs.device) | |
one_mask[:i+1,i+1:] = False | |
one_mask[i+1:,:i+1] = False | |
mapping_ind, unlinkedmask = get_single_mapping_ind(bwd_flows[i:i+1], bwd_occs[i:i+1], imgs[i:i+2], scale) | |
if i == 0: | |
fwd_mapping = [torch.arange(len(mapping_ind)).to(mapping_ind.device)] | |
bwd_mapping = [torch.arange(len(mapping_ind)).to(mapping_ind.device)] | |
iterattn_mask[unlinkedmask[fwd_mapping[-1]]] = torch.logical_and(iterattn_mask[unlinkedmask[fwd_mapping[-1]]], one_mask) | |
fwd_mapping += [mapping_ind[fwd_mapping[-1]]] | |
bwd_mapping += [torch.sort(fwd_mapping[-1])[1]] | |
fwd_mappings = torch.stack(fwd_mapping, dim=0).unsqueeze(1) | |
bwd_mappings = torch.stack(bwd_mapping, dim=0).unsqueeze(1) | |
return fwd_mappings, bwd_mappings, iterattn_mask.unsqueeze(1) | |