Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
import matplotlib.pyplot as plt | |
import torch.nn.functional as F | |
def numpy2tensor(img): | |
x0 = torch.from_numpy(img.copy()).float().cuda() / 255.0 * 2.0 - 1. | |
x0 = torch.stack([x0], dim=0) | |
# einops.rearrange(x0, 'b h w c -> b c h w').clone() | |
return x0.permute(0, 3, 1, 2) | |
def pil2tensor(img): | |
return numpy2tensor(np.array(img)) | |
def tensor2numpy(img): | |
image = (img / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
return images | |
def tensor2pil(img): | |
return Image.fromarray(tensor2numpy(img)[0]) | |
def cv2sod(img): | |
in_ = np.array(img, dtype=np.float32) | |
in_ -= np.array((104.00699, 116.66877, 122.67892)) | |
in_ = in_.transpose((2,0,1)) | |
image = torch.Tensor(in_) | |
return F.interpolate(image.unsqueeze(0), scale_factor=0.5, mode='bilinear') | |
def get_frame_count(video_path: str): | |
video = cv2.VideoCapture(video_path) | |
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
video.release() | |
return frame_count | |
def resize_image(input_image, resolution): | |
H, W, C = input_image.shape | |
H = float(H) | |
W = float(W) | |
k = float(resolution) / max(H, W) | |
H *= k | |
W *= k | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
return img | |
def visualize(img_arr, dpi): | |
plt.figure(figsize=(10,10),dpi=dpi) | |
plt.imshow(((img_arr.detach().cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8)) | |
plt.axis('off') | |
plt.show() | |
def calc_mean_std(feat, eps=1e-5, chunk=1): | |
size = feat.size() | |
assert (len(size) == 4) | |
if chunk == 2: | |
feat = torch.cat(feat.chunk(2), dim=3) | |
N, C = size[:2] | |
feat_var = feat.view(N//chunk, C, -1).var(dim=2) + eps | |
feat_std = feat_var.sqrt().view(N, C, 1, 1) | |
feat_mean = feat.view(N//chunk, C, -1).mean(dim=2).view(N//chunk, C, 1, 1) | |
return feat_mean.repeat(chunk,1,1,1), feat_std.repeat(chunk,1,1,1) | |
def adaptive_instance_normalization(content_feat, style_feat, chunk=1): | |
assert (content_feat.size()[:2] == style_feat.size()[:2]) | |
size = content_feat.size() | |
style_mean, style_std = calc_mean_std(style_feat, chunk) | |
content_mean, content_std = calc_mean_std(content_feat) | |
normalized_feat = (content_feat - content_mean.expand( | |
size)) / content_std.expand(size) | |
return normalized_feat * style_std.expand(size) + style_mean.expand(size) | |
class Dilate(): | |
def __init__(self, kernel_size=7, channels=1, device='cpu'): | |
self.kernel_size=kernel_size | |
self.channels = channels | |
gaussian_kernel = torch.ones(1, 1, self.kernel_size, self.kernel_size) | |
gaussian_kernel = gaussian_kernel.repeat(self.channels, 1, 1, 1) | |
self.mean = (self.kernel_size - 1)//2 | |
gaussian_kernel = gaussian_kernel.to(device) | |
self.gaussian_filter = gaussian_kernel | |
def __call__(self, x): | |
x = F.pad(x, (self.mean,self.mean,self.mean,self.mean), "replicate") | |
return torch.clamp(F.conv2d(x, self.gaussian_filter, bias=None), 0, 1) | |
def get_saliency(imgs, sod_model, dilate): | |
imgs_sod = torch.cat([cv2sod(img) for img in imgs], dim=0).cuda() | |
_, _, up_sal_f = sod_model(imgs_sod) | |
saliency = 1-dilate(np.squeeze(torch.sigmoid(up_sal_f[-1])).unsqueeze(1)) | |
del up_sal_f | |
torch.cuda.empty_cache() | |
return saliency | |