FRESCO / src /utils.py
SingleZombie
upload files
ff715ca
raw
history blame
3.55 kB
import torch
import numpy as np
from PIL import Image
import cv2
import matplotlib.pyplot as plt
import torch.nn.functional as F
def numpy2tensor(img):
x0 = torch.from_numpy(img.copy()).float().cuda() / 255.0 * 2.0 - 1.
x0 = torch.stack([x0], dim=0)
# einops.rearrange(x0, 'b h w c -> b c h w').clone()
return x0.permute(0, 3, 1, 2)
def pil2tensor(img):
return numpy2tensor(np.array(img))
def tensor2numpy(img):
image = (img / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
return images
def tensor2pil(img):
return Image.fromarray(tensor2numpy(img)[0])
def cv2sod(img):
in_ = np.array(img, dtype=np.float32)
in_ -= np.array((104.00699, 116.66877, 122.67892))
in_ = in_.transpose((2,0,1))
image = torch.Tensor(in_)
return F.interpolate(image.unsqueeze(0), scale_factor=0.5, mode='bilinear')
def get_frame_count(video_path: str):
video = cv2.VideoCapture(video_path)
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
video.release()
return frame_count
def resize_image(input_image, resolution):
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
return img
def visualize(img_arr, dpi):
plt.figure(figsize=(10,10),dpi=dpi)
plt.imshow(((img_arr.detach().cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8))
plt.axis('off')
plt.show()
def calc_mean_std(feat, eps=1e-5, chunk=1):
size = feat.size()
assert (len(size) == 4)
if chunk == 2:
feat = torch.cat(feat.chunk(2), dim=3)
N, C = size[:2]
feat_var = feat.view(N//chunk, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N//chunk, C, -1).mean(dim=2).view(N//chunk, C, 1, 1)
return feat_mean.repeat(chunk,1,1,1), feat_std.repeat(chunk,1,1,1)
def adaptive_instance_normalization(content_feat, style_feat, chunk=1):
assert (content_feat.size()[:2] == style_feat.size()[:2])
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat, chunk)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(
size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
class Dilate():
def __init__(self, kernel_size=7, channels=1, device='cpu'):
self.kernel_size=kernel_size
self.channels = channels
gaussian_kernel = torch.ones(1, 1, self.kernel_size, self.kernel_size)
gaussian_kernel = gaussian_kernel.repeat(self.channels, 1, 1, 1)
self.mean = (self.kernel_size - 1)//2
gaussian_kernel = gaussian_kernel.to(device)
self.gaussian_filter = gaussian_kernel
def __call__(self, x):
x = F.pad(x, (self.mean,self.mean,self.mean,self.mean), "replicate")
return torch.clamp(F.conv2d(x, self.gaussian_filter, bias=None), 0, 1)
@torch.no_grad()
def get_saliency(imgs, sod_model, dilate):
imgs_sod = torch.cat([cv2sod(img) for img in imgs], dim=0).cuda()
_, _, up_sal_f = sod_model(imgs_sod)
saliency = 1-dilate(np.squeeze(torch.sigmoid(up_sal_f[-1])).unsqueeze(1))
del up_sal_f
torch.cuda.empty_cache()
return saliency