fabiencasenave's picture
Update app.py
29f12ba verified
import gradio as gr
import pickle
from datasets import load_dataset
from plaid.containers.sample import Sample
import numpy as np
import pyrender
from trimesh import Trimesh
import matplotlib as mpl
import matplotlib.cm as cm
import os
# switch to "osmesa" or "egl" before loading pyrender
os.environ["PYOPENGL_PLATFORM"] = "egl"
# os.system("wget https://zenodo.org/records/10124594/files/Tensile2d.tar.gz")
# os.system("tar -xvf Tensile2d.tar.gz")
hf_dataset = load_dataset("PLAID-datasets/AirfRANS_original", split="all_samples")
nb_samples = 1000
field_names_train = ["Ux", "Uy", "p", "nut", "implicit_distance"]
_HEADER_ = '''
<h2><b>Visualization demo of <a href='https://huggingface.co/datasets/PLAID-datasets/AirfRANS_original' target='_blank'><b>AirfRANS_original dataset</b></b></h2>
'''
def round_num(num)->str:
return '%s' % float('%.3g' % num)
def sample_info(sample_id_str, fieldn):
sample_ = hf_dataset[int(sample_id_str)]["sample"]
plaid_sample = Sample.model_validate(pickle.loads(sample_))
# plaid_sample = Sample.load_from_dir(f"Tensile2d/dataset/samples/sample_"+str(sample_id_str).zfill(9))
nodes = plaid_sample.get_nodes()
field = plaid_sample.get_field(fieldn)
if nodes.shape[1] == 2:
nodes__ = np.zeros((nodes.shape[0],nodes.shape[1]+1))
nodes__[:,:-1] = nodes
nodes = nodes__
quads = plaid_sample.get_elements()['QUAD_4']
quads = quads[:,[3,2,1,0]]
# generate colormap
if np.linalg.norm(field) > 0:
norm = mpl.colors.Normalize(vmin=np.min(field), vmax=np.max(field))
cmap = cm.seismic#cm.coolwarm
m = cm.ScalarMappable(norm=norm, cmap=cmap)
vertex_colors = m.to_rgba(field)[:,:3]
else:
vertex_colors = 1+np.zeros((field.shape[0], 3))
vertex_colors[:,0] = 0.2298057
vertex_colors[:,1] = 0.01555616
vertex_colors[:,2] = 0.15023281
# generate mesh
trimesh = Trimesh(vertices = nodes, faces = quads)
trimesh.visual.vertex_colors = vertex_colors
mesh = pyrender.Mesh.from_trimesh(trimesh, smooth=False)
# compose scene
scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
camera = pyrender.PerspectiveCamera( yfov=np.pi / 3.0)
light = pyrender.DirectionalLight(color=[1,1,1], intensity=1000.)
scene.add(mesh, pose= np.eye(4))
scene.add(light, pose= np.eye(4))
scene.add(camera, pose=[[ 1, 0, 0, 1],
[ 0, 1, 0, 0],
[ 0, 0, 1, 6],
[ 0, 0, 0, 1]])
# render scene
r = pyrender.OffscreenRenderer(1024, 1024)
color, _ = r.render(scene)
str__ = f"Training sample {sample_id_str}\n"
str__ += str(plaid_sample)+"\n"
if len(hf_dataset.description['in_scalars_names'])>0:
str__ += "\ninput scalars:\n"
for sname in hf_dataset.description['in_scalars_names']:
str__ += f"- {sname}: {round_num(plaid_sample.get_scalar(sname))}\n"
if len(hf_dataset.description['out_scalars_names'])>0:
str__ += "\noutput scalars:\n"
for sname in hf_dataset.description['out_scalars_names']:
str__ += f"- {sname}: {round_num(plaid_sample.get_scalar(sname))}\n"
str__ += f"\n\nMesh number of nodes: {nodes.shape[0]}\n"
if len(hf_dataset.description['in_fields_names'])>0:
str__ += "\ninput fields:\n"
for fname in hf_dataset.description['in_fields_names']:
str__ += f"- {fname}\n"
if len(hf_dataset.description['out_fields_names'])>0:
str__ += "\noutput fields:\n"
for fname in hf_dataset.description['out_fields_names']:
str__ += f"- {fname}\n"
return str__, color
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.Markdown(_HEADER_)
with gr.Row(variant="panel"):
with gr.Column():
d1 = gr.Slider(0, nb_samples-1, value=0, label="Training sample id", info="Choose between 0 and "+str(nb_samples-1))
output1 = gr.Text(label="Training sample info")
with gr.Column():
d2 = gr.Dropdown(field_names_train, value=field_names_train[0], label="Field name")
output2 = gr.Image(label="Training sample visualization")
d1.input(sample_info, [d1, d2], [output1, output2])
d2.input(sample_info, [d1, d2], [output1, output2])
demo.launch()