File size: 2,417 Bytes
5ea1b6f
 
 
 
 
ede25fc
5ea1b6f
 
 
ede25fc
5ea1b6f
 
 
ede25fc
5ea1b6f
ede25fc
5ea1b6f
ede25fc
5ea1b6f
ede25fc
5ea1b6f
 
ede25fc
 
 
 
 
 
 
5ea1b6f
 
45cdafe
 
5ea1b6f
45cdafe
5ea1b6f
 
65555e4
 
 
 
5ea1b6f
65555e4
 
 
 
5ea1b6f
65555e4
 
5ea1b6f
65555e4
 
 
 
 
5ea1b6f
65555e4
64b8a37
 
cc163c7
5ea1b6f
bb185d1
 
5ea1b6f
bb185d1
5ea1b6f
 
 
4629515
 
5ea1b6f
 
 
 
 
 
 
 
 
 
4629515
 
5ea1b6f
 
 
 
 
ede25fc
 
5ea1b6f
ede25fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import gradio as gr
import pickle
# from datasets import load_from_disk
from plaid.containers.sample import Sample
# import pyvista as pv

import pyrender
import trimesh
import matplotlib.pyplot as plt

import os
# switch to "osmesa" or "egl" before loading pyrender
os.environ["PYOPENGL_PLATFORM"] = "egl"

import numpy as np

# FOLDER = "plot"

# dataset = load_from_disk("Rotor37")

field_names_train = ["Temperature", "Pressure", "Density"]#pickle.loads(dataset[0]["sample"]).get_field_names()
field_names_test  = []







def sample_info(sample_id_str, fieldn):

    # sample_id = int(sample_id_str)
    # plaid_sample = Sample.load_from_dir(f"Rotor37/dataset/samples/sample_"+str(sample_id_str).zfill(9))

    str__ = f"loading sample {sample_id_str}"
    
    
    # generate mesh
    sphere = trimesh.creation.icosphere(subdivisions=4, radius=0.8)
    sphere.vertices+=1e-2*np.random.randn(*sphere.vertices.shape)
    mesh = pyrender.Mesh.from_trimesh(sphere, smooth=False)
    
    # compose scene
    scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0])
    camera = pyrender.PerspectiveCamera( yfov=np.pi / 3.0)
    light = pyrender.DirectionalLight(color=[1,1,1], intensity=2e3)
    
    scene.add(mesh, pose=  np.eye(4))
    scene.add(light, pose=  np.eye(4))
    
    c = 2**-0.5
    scene.add(camera, pose=[[ 1,  0,  0,  0],
                            [ 0,  c, -c, -2],
                            [ 0,  c,  c,  2],
                            [ 0,  0,  0,  1]])
    
    # render scene
    # r = pyrender.OffscreenRenderer(512, 512)
    # color, _ = r.render(scene)
    color = np.random.rand(512, 512)
    
    plt.figure(figsize=(8,8))
    plt.imshow(color)
    
    plt.savefig("test.png")



    return str__, "test.png"
    # return str__, str__


if __name__ == "__main__":

    with gr.Blocks() as demo:
        d1 = gr.Slider(0, 999, value=0, label="Training sample id", info="Choose between 0 and 999")
        d2 = gr.Dropdown(field_names_train, value=field_names_train[0], label="Field name")


        output1 = gr.Text(label="Training sample info")
        # output2 = gr.Text(label="Training sample visualization")
        output2 = gr.Image(label="Training sample visualization")

        # d1.input(update_second, d1, d2)

        d1.input(sample_info, [d1, d2], [output1, output2])
        d2.input(sample_info, [d1, d2], [output1, output2]) 


    demo.launch()