Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pickle | |
# from datasets import load_from_disk | |
from plaid.containers.sample import Sample | |
# import pyvista as pv | |
import pyrender | |
import trimesh | |
import matplotlib.pyplot as plt | |
import os | |
# switch to "osmesa" or "egl" before loading pyrender | |
os.environ["PYOPENGL_PLATFORM"] = "egl" | |
import numpy as np | |
# FOLDER = "plot" | |
# dataset = load_from_disk("Rotor37") | |
field_names_train = ["Temperature", "Pressure", "Density"]#pickle.loads(dataset[0]["sample"]).get_field_names() | |
field_names_test = [] | |
def sample_info(sample_id_str, fieldn): | |
# sample_id = int(sample_id_str) | |
# plaid_sample = Sample.load_from_dir(f"Rotor37/dataset/samples/sample_"+str(sample_id_str).zfill(9)) | |
str__ = f"loading sample {sample_id_str}" | |
# generate mesh | |
sphere = trimesh.creation.icosphere(subdivisions=4, radius=0.8) | |
sphere.vertices+=1e-2*np.random.randn(*sphere.vertices.shape) | |
mesh = pyrender.Mesh.from_trimesh(sphere, smooth=False) | |
# compose scene | |
scene = pyrender.Scene(ambient_light=[.1, .1, .3], bg_color=[0, 0, 0]) | |
camera = pyrender.PerspectiveCamera( yfov=np.pi / 3.0) | |
light = pyrender.DirectionalLight(color=[1,1,1], intensity=2e3) | |
scene.add(mesh, pose= np.eye(4)) | |
scene.add(light, pose= np.eye(4)) | |
c = 2**-0.5 | |
scene.add(camera, pose=[[ 1, 0, 0, 0], | |
[ 0, c, -c, -2], | |
[ 0, c, c, 2], | |
[ 0, 0, 0, 1]]) | |
# render scene | |
# r = pyrender.OffscreenRenderer(512, 512) | |
# color, _ = r.render(scene) | |
# plt.figure(figsize=(8,8)) | |
# plt.imshow(color) | |
# plt.savefig("test.png") | |
# return str__, "test.png" | |
return str__, str__ | |
if __name__ == "__main__": | |
with gr.Blocks() as demo: | |
d1 = gr.Slider(0, 999, value=0, label="Training sample id", info="Choose between 0 and 999") | |
d2 = gr.Dropdown(field_names_train, value=field_names_train[0], label="Field name") | |
output1 = gr.Text(label="Training sample info") | |
output2 = gr.Text(label="Training sample visualization") | |
# output2 = gr.Image(label="Training sample visualization") | |
# d1.input(update_second, d1, d2) | |
d1.input(sample_info, [d1, d2], [output1, output2]) | |
d2.input(sample_info, [d1, d2], [output1, output2]) | |
demo.launch() | |