# Utilities to build a RAG system to query information from the CAMELS cosmological simulations using Langchain # Author: Pablo Villanueva Domingo from langchain import hub from langchain_chroma import Chroma from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.document_loaders import WebBaseLoader # Load documentation from urls def load_docs(): # Get urls urlsfile = open("urls.txt") urls = urlsfile.readlines() urls = [url.replace("\n","") for url in urls] urlsfile.close() # Load, chunk and index the contents of the blog. loader = WebBaseLoader(urls) docs = loader.load() return docs # Join content pages for processing def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) # Create a RAG chain def RAG(llm, docs, embeddings): # Split text text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) # Create vector store vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings) # Retrieve and generate using the relevant snippets of the documents retriever = vectorstore.as_retriever() # Prompt basis example for RAG systems prompt = hub.pull("rlm/rag-prompt") # Create the chain rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) return rag_chain