panel-template / app.py
sophiamyang's picture
async version of the image classifier
307197c
raw
history blame
3.65 kB
import aiohttp
import io
import random
import panel as pn
from PIL import Image
from transformers import CLIPProcessor, CLIPModel
from typing import List, Tuple
pn.extension(design='bootstrap', sizing_mode="stretch_width")
async def random_url(_):
api_url = random.choice([
"https://api.thecatapi.com/v1/images/search",
"https://api.thedogapi.com/v1/images/search"
])
async with aiohttp.ClientSession() as session:
async with session.get(api_url) as resp:
return (await resp.json())[0]["url"]
@pn.cache
def load_processor_model(
processor_name: str, model_name: str
) -> Tuple[CLIPProcessor, CLIPModel]:
processor = CLIPProcessor.from_pretrained(processor_name)
model = CLIPModel.from_pretrained(model_name)
return processor, model
async def open_image_url(image_url: str) -> Image:
async with aiohttp.ClientSession() as session:
async with session.get(image_url) as resp:
return Image.open(io.BytesIO(await resp.read()))
def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
processor, model = load_processor_model(
"openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
)
inputs = processor(
text=class_items,
images=[image],
return_tensors="pt", # pytorch tensors
)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
return class_likelihoods[0]
async def process_inputs(class_names: List[str], image_url: str):
"""
High level function that takes in the user inputs and returns the
classification results as panel objects.
"""
if not image_url:
yield '## Provide an image URL'
return
yield '## Fetching image and running model βš™'
pil_img = await open_image_url(image_url)
img = pn.pane.Image(pil_img, height=400, align='center')
class_items = class_names.split(",")
class_likelihoods = get_similarity_scores(class_items, pil_img)
# build the results column
results = pn.Column("## πŸŽ‰ Here are the results!", img)
for class_item, class_likelihood in zip(class_items, class_likelihoods):
row_label = pn.widgets.StaticText(
name=class_item.strip(), value=f"{class_likelihood:.2%}", align='center'
)
row_bar = pn.indicators.Progress(
value=int(class_likelihood * 100),
sizing_mode="stretch_width",
bar_color="secondary",
margin=(0, 10),
design=pn.theme.Material
)
results.append(pn.Column(row_label, row_bar))
yield results
# create widgets
randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
image_url = pn.widgets.TextInput(
name="Image URL to classify",
value=pn.bind(random_url, randomize_url),
)
class_names = pn.widgets.TextInput(
name="Comma separated class names",
placeholder="Enter possible class names, e.g. cat, dog",
value="cat, dog, parrot",
)
input_widgets = pn.Column(
"## 😊 Click randomize or paste a URL to start classifying!",
pn.Row(image_url, randomize_url),
class_names,
)
# add interactivity
interactive_result = pn.bind(
process_inputs, image_url=image_url, class_names=class_names
)
# create dashboard
main = pn.WidgetBox(
input_widgets,
interactive_result,
)
pn.template.BootstrapTemplate(
title="Panel Image Classification Demo",
main=main,
main_max_width="min(50%, 698px)",
header_background="#F08080",
).servable(title="Panel Image Classification Demo");