Spaces:
Runtime error
Runtime error
import aiohttp | |
import io | |
import random | |
import panel as pn | |
from PIL import Image | |
from transformers import CLIPProcessor, CLIPModel | |
from typing import List, Tuple | |
pn.extension(design='bootstrap', sizing_mode="stretch_width") | |
async def random_url(_): | |
api_url = random.choice([ | |
"https://api.thecatapi.com/v1/images/search", | |
"https://api.thedogapi.com/v1/images/search" | |
]) | |
async with aiohttp.ClientSession() as session: | |
async with session.get(api_url) as resp: | |
return (await resp.json())[0]["url"] | |
def load_processor_model( | |
processor_name: str, model_name: str | |
) -> Tuple[CLIPProcessor, CLIPModel]: | |
processor = CLIPProcessor.from_pretrained(processor_name) | |
model = CLIPModel.from_pretrained(model_name) | |
return processor, model | |
async def open_image_url(image_url: str) -> Image: | |
async with aiohttp.ClientSession() as session: | |
async with session.get(image_url) as resp: | |
return Image.open(io.BytesIO(await resp.read())) | |
def get_similarity_scores(class_items: List[str], image: Image) -> List[float]: | |
processor, model = load_processor_model( | |
"openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32" | |
) | |
inputs = processor( | |
text=class_items, | |
images=[image], | |
return_tensors="pt", # pytorch tensors | |
) | |
outputs = model(**inputs) | |
logits_per_image = outputs.logits_per_image | |
class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy() | |
return class_likelihoods[0] | |
async def process_inputs(class_names: List[str], image_url: str): | |
""" | |
High level function that takes in the user inputs and returns the | |
classification results as panel objects. | |
""" | |
if not image_url: | |
yield '## Provide an image URL' | |
return | |
yield '## Fetching image and running model β' | |
pil_img = await open_image_url(image_url) | |
img = pn.pane.Image(pil_img, height=400, align='center') | |
class_items = class_names.split(",") | |
class_likelihoods = get_similarity_scores(class_items, pil_img) | |
# build the results column | |
results = pn.Column("## π Here are the results!", img) | |
for class_item, class_likelihood in zip(class_items, class_likelihoods): | |
row_label = pn.widgets.StaticText( | |
name=class_item.strip(), value=f"{class_likelihood:.2%}", align='center' | |
) | |
row_bar = pn.indicators.Progress( | |
value=int(class_likelihood * 100), | |
sizing_mode="stretch_width", | |
bar_color="secondary", | |
margin=(0, 10), | |
design=pn.theme.Material | |
) | |
results.append(pn.Column(row_label, row_bar)) | |
yield results | |
# create widgets | |
randomize_url = pn.widgets.Button(name="Randomize URL", align="end") | |
image_url = pn.widgets.TextInput( | |
name="Image URL to classify", | |
value=pn.bind(random_url, randomize_url), | |
) | |
class_names = pn.widgets.TextInput( | |
name="Comma separated class names", | |
placeholder="Enter possible class names, e.g. cat, dog", | |
value="cat, dog, parrot", | |
) | |
input_widgets = pn.Column( | |
"## π Click randomize or paste a URL to start classifying!", | |
pn.Row(image_url, randomize_url), | |
class_names, | |
) | |
# add interactivity | |
interactive_result = pn.bind( | |
process_inputs, image_url=image_url, class_names=class_names | |
) | |
# create dashboard | |
main = pn.WidgetBox( | |
input_widgets, | |
interactive_result, | |
) | |
pn.template.BootstrapTemplate( | |
title="Panel Image Classification Demo", | |
main=main, | |
main_max_width="min(50%, 698px)", | |
header_background="#F08080", | |
).servable(title="Panel Image Classification Demo"); |